結果

問題 No.3024 等式
ユーザー rsk0315rsk0315
提出日時 2023-09-14 01:21:12
言語 Rust
(1.77.0 + proconio)
結果
TLE  
実行時間 -
コード長 38,404 bytes
コンパイル時間 18,337 ms
コンパイル使用メモリ 384,876 KB
実行使用メモリ 496,284 KB
最終ジャッジ日時 2024-07-01 09:23:54
合計ジャッジ時間 21,017 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
8,868 KB
testcase_01 AC 5 ms
6,944 KB
testcase_02 AC 5 ms
6,940 KB
testcase_03 AC 5 ms
6,944 KB
testcase_04 AC 4 ms
6,940 KB
testcase_05 AC 5 ms
6,944 KB
testcase_06 AC 8 ms
6,940 KB
testcase_07 AC 8 ms
6,940 KB
testcase_08 AC 9 ms
6,944 KB
testcase_09 AC 4 ms
6,940 KB
testcase_10 AC 5 ms
6,940 KB
testcase_11 AC 5 ms
6,940 KB
testcase_12 AC 193 ms
16,000 KB
testcase_13 AC 191 ms
15,872 KB
testcase_14 AC 239 ms
19,840 KB
testcase_15 AC 6 ms
6,940 KB
testcase_16 AC 5 ms
6,944 KB
testcase_17 AC 21 ms
6,940 KB
testcase_18 AC 8 ms
6,944 KB
testcase_19 AC 9 ms
6,940 KB
testcase_20 AC 5 ms
6,940 KB
testcase_21 AC 5 ms
6,940 KB
testcase_22 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

// This code is generated by [rsk0315/cargo-atcoder](https://github.com/rsk0315/cargo-atcoder) forked from [tanakh/cargo-atcoder](https://github.com/tanakh/cargo-atcoder).
// Original source code:
const _: &str = r#"
use std::collections::{BTreeMap, BTreeSet};
use std::iter::FromIterator;

use itertools::Itertools;
use proconio::input;

const MOD: i64 = 998244353;

fn main() {
    input! {
        n: usize,
        a: [i32; n],
    }

    let mut memo = BTreeMap::new();

    let res = a.iter().permutations(n).any(|p| {
        let a: Vec<_> = p.iter().map(|&&ai| ai).collect();
        solve(&a, &mut memo)
    });
    println!("{}", if res { "YES" } else { "NO" });
}

fn solve(a: &[i32], memo: &mut BTreeMap<i64, BTreeSet<(i32, i32)>>) -> bool {
    let n = a.len();

    let mut dp = vec![vec![0; n + 1]; n + 1];

    for i in 0..n {
        dp[i][i + 1] = a[i] as i64;
        for j in i + 1..n {
            dp[i][j + 1] = dp[i][j] * 101 + a[j] as i64;
        }

        memo.insert(a[i] as i64, BTreeSet::from_iter(Some((a[i], 1))));
    }

    for w in 2..=n {
        for l in 0..=n - w {
            let r = l + w;
            let mut tmp = BTreeSet::new();

            if memo.contains_key(&dp[l][r]) {
                continue;
            }

            for m in l + 1..r {
                for &vl in &memo[&dp[l][m]] {
                    for &vr in &memo[&dp[m][r]] {
                        if eq(vl, vr) {
                            return true;
                        }
                        if r - l == n {
                            continue;
                        }

                        tmp.insert(add(vl, vr));
                        tmp.insert(sub(vl, vr));
                        tmp.insert(mul(vl, vr));
                        if vr.1 != 0 {
                            tmp.insert(div(vl, vr));
                        }
                    }
                }
            }

            memo.insert(dp[l][r], tmp);
        }
    }

    false
}

fn eq((nl, dl): (i32, i32), (nr, dr): (i32, i32)) -> bool {
    let nl = nl as i64;
    let nr = nr as i64;
    let dl = dl as i64;
    let dr = dr as i64;
    (nl * dr - nr * dl) % MOD == 0
}

fn add((nl, dl): (i32, i32), (nr, dr): (i32, i32)) -> (i32, i32) {
    let nl = nl as i64;
    let nr = nr as i64;
    let dl = dl as i64;
    let dr = dr as i64;
    (((nl * dr + nr * dl) % MOD) as i32, (dl * dr % MOD) as i32)
}

fn sub((nl, dl): (i32, i32), (nr, dr): (i32, i32)) -> (i32, i32) {
    let nl = nl as i64;
    let nr = nr as i64;
    let dl = dl as i64;
    let dr = dr as i64;
    ((nl * dr - nr * dl).rem_euclid(MOD) as i32, (dl * dr % MOD) as i32)
}

fn mul((nl, dl): (i32, i32), (nr, dr): (i32, i32)) -> (i32, i32) {
    let nl = nl as i64;
    let nr = nr as i64;
    let dl = dl as i64;
    let dr = dr as i64;
    ((nl * nr % MOD) as i32, (dl * dr % MOD) as i32)
}

fn div((nl, dl): (i32, i32), (nr, dr): (i32, i32)) -> (i32, i32) {
    let nl = nl as i64;
    let nr = nr as i64;
    let dl = dl as i64;
    let dr = dr as i64;
    ((nl * dr % MOD) as i32, (dl * nr % MOD) as i32)
}
"#;

fn main() {
    let exe = std::env::temp_dir().join("bin3F240AE2");
    std::io::Write::write_all(&mut std::fs::File::create(&exe).unwrap(), &decode(BIN)).unwrap();
    #[cfg(unix)]
    fn executable(exe: &std::path::Path) {
        std::fs::set_permissions(exe, std::os::unix::fs::PermissionsExt::from_mode(0o755)).unwrap();
    }
    #[cfg(not(unix))]
    fn executable(_: &std::path::Path) {}
    executable(&exe);
    std::process::exit(std::process::Command::new(&exe).status().unwrap().code().unwrap())
}

fn decode(v: &str) -> Vec<u8> {
    let mut ret = vec![];
    let mut buf = 0;
    let mut tbl = vec![64; 256];
    for i in 0..64 { tbl[TBL[i] as usize] = i as u8; }
    for (i, c) in v.bytes().filter_map(|c| { let c = tbl[c as usize]; if c < 64 { Some(c) } else { None } }).enumerate() {
        match i % 4 {
            0 => buf = c << 2,
            1 => { ret.push(buf | c >> 4); buf = c << 4; }
            2 => { ret.push(buf | c >> 2); buf = c << 6; }
            3 => ret.push(buf | c),
            _ => unreachable!(),
        }
    }
    ret
}

const TBL: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const BIN: &str = "
f0VMRgIBAQAAAAAAAAAAAAMAPgABAAAAQCwBAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAOAADAAAA
AAAAAAEAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAABY0QAAAAAAAAAQAAAAAAAA
AQAAAAUAAAAAAAAAAAAAAADgAAAAAAAAAOAAAAAAAAAnYAAAAAAAACdgAAAAAAAAABAAAAAAAABR5XRk
BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAJDLkU9VUFgh
8BMOFgAAAADwyAAAFowAAOACAACvAAAADgAAABoDAD+RRYRoPYmm2orhgzJO2Qhmn1/eIJnUHYC/sK5L
gxY8/N3h04LfAjOc6QnIx5AgyfFDGD21mRXwbZu4GDjp2+sFqlZeDjl2gqS0AK5sWKSfYpREFpraDMq1
2/KEfiWLoCJaF4KVmFHmPcOyXi8J+Tjn8UbjzCmOqRbIbI3k9ivjaIvtngDljRBWAEbRrZuOLrqExUJW
WW242iUksDVulRU6x5lbFe7ZPNxGZ8UQDwAAVgMAAA4AAAAaAwAXmwkmM3GmCYALHTJPNRq/liYhnSgP
FX2WO3CstB0TYQRuPnDn/eIVCsd0PzwJH8GA1GB2qWgYANxm/WNt3dJxprHuWlGaFfnDnsJtgAzPytQy
jGqEt1+lBHeaVIRCUrfDAzJaNjWvJnfdUGUinh3FaL49O9CeD4srC9sK9WH8GLEV/SqHWAymLB07LTE9
/vcZwpwB7XmjZfH4o5og5+3LEvve5fRh3JpeYFCddQXsamWuKZCpFbxCks2xWsF/kgHWIBe4e/CxqfHr
YZZRg7BPb/Z0vtYDaVQof7xjgHnBLSmN/PbtS5U6fWL9GAoR0k6qM9NOOYbkXpuQJiHC4p7JtbNfIHea
cXpDEa09ee9WPrYCDwdyECNUkAhd7agLpNmsXN8k/tqCPlwZVyCpZNZBQXzw6Y4EGxgqwOyaonmsYUSg
Haynr4LXM6OapZaD2/F5TCOpukHwV9q4SJEgXus/iKwncfrIcLHfGyrkpV2wtTir94pRleod83spOWG7
8IUXDBfZjJnAh3m3TO1hh0k0thJ4pJrqz8KYw4NoYZLYadWKvDSjcjRLjTBNaO9TSByhajGF3cp/7rTz
ETkz82spshBHoPsfndoySxHHSY2Oi9QcfzRsppsABaNGXOPQ+jlJAsTRAtr9BfwaUUM84P6nrCbVQR6b
TG1xPA0HjSBBYK7mYJIenDT0lR0CdJXDN4Eu7KgVmhnMpDXH24BC4dJ2sYByteLcUMRstiT55a+OQro6
2XEe73wa7Utgo1aAKMB4miux9BqSmGvgJu2m2k1z71VVbyjWlxO/X7cr69/5Z5JkulbOGCD8Fd4NOjJs
qhzGCwLTeve+RIXvUxGLG7Frv0JC4MQzrsbMCd/HgOGatysb7p7vXAeO/+m1QK2XnMQ7tcl6PO+hCLTW
oJbLctxMKDeEMBM4djy8cn7/4shwA+PRCy+s5b37RcaeIma+SkcxdvEfLkXe7846hfz25tfM7uRs/fv3
KpPMXEcKGz8ruzKEJfTrCAfR/hKqv5BdJeCabDPjcqUoqkKfDDy8JuI3ObrPxegxAyDNm78p1qi5vTrl
zyyYuMueAKrD7Gp059VWWXCkDMb/yHK7TJG/lyrz3MRHI6yeLqM1Vlz92XK9Nzbo4RaMAACvQgAADkkE
ABoDACQg2YCCWrE815+H4rxawaMa02RIVGRnQtZIpoMFuP9Wgi60Hgp3+fzFqn9j4PislONSGHhxa51P
DPWAhtr2JHmtIsmDKM20hg3wqnPIg2SP7YrfKKayxM9MSQoknsSmGE9So3Pzd1OUf9TO2wCOSf5EtMSA
ZOlTsTOD7AZioosdpmIVhNy5iWe73f9epQk1avTpP0HvcGTsqJyT2attj9EUJFSQeyoCJBDF3wV8msti
K+AlnTD85R709YXmXsvH2ZNIiFmlaXp8Kh0k6csPrn68LAfVshSY0gJvuFVJIFg9gX6XaJGlYlZVetoY
bbEWJ/dCYjrwBe0rWaac27dOL+eGesWQDdagJtsyOGdC+TG9gsCxxL2D1Z2ndZeJ56lofcuJRfjTBDN0
Yj1tGWTV69tPEhBUONR15NSmQLorYOlg0Q58NWoAT3hmriQpxfie4qDMI+96iJfzqHrgN6XFAEjwoeW1
JTHcy5mKTKfyy2+rMYeQHUQEvUh0oWrXesyASl8v/CaW7TZnV+TK23Zetmmq/FDQ2HKf2/gOLt2ijg6d
5doRrSKBXEg5Nwk+nNbP1NKrJTKmPJKfHnp4QO+qCatpNzY9NsAVnDiTmfkwIcvFWVO6n42nrQQrCdkU
Q8MZnrlfr1+zUbm2vyXJOmH94ndCxR3OlCsyOAbX8vQt/ScdB2Jge0bOWYqfbU2/VjYolMzk8OZqFd/T
USHjzGpVdepm9Z7ZWolavj8XyoybR9Y7Zp/5CrrHA7t/UKPEw6W8NKj7VMnSFEsjspe/dJfsix7XFEUN
mgj0dnQu/FGKuQkoxoSmrRGtSJk7SRPuFVqHsFab2VtDhDM944PS81Q2eATxqH9/iT5oACCnCYFT6nsD
+iHz5W2gMOFpIYIg/Emeg6EfwFPNmU/YrDdtwSq0SJZViYwTaxUlOjOeKsP454bMdAFNiDe8Wp8EE8dd
z1WFM/kximGe8SkE8lQuTKZlgnAGmaO30s5QYmLvUbtIga71Umz26soo268ZxxP+I+/Qr8P4jrSz6pha
PsCg2ODErmIo7IEtls01QkReAjOIBWBVfNh/PqtMcyRWWAMQkTwVLB1TXY1xq0pHGMcsaCxk6GcZrmL3
gLghjHaQzQxFq+u68A+wDV6bkxQA6pzwIAVV0zXwBw8Exw+1F/f65DtBRDqrvAygeaOoB675cYHBHWa/
SeW0TSZjap2CVRVP9h/IZpesqLI4wNdzvppokg08r9SawpzMozjp3ykhi/FQMIDZZJOYk8obg7cDV5uh
S6iyZTCIQF6OdBO7E5q369B/AdjRCT4JmlcawGzinqSqYjdwwaFTMAmsYQvzqlA8nP7wxZlzjts6w9WI
Qk0ZYpw6rRZ+Vycj7i0EHNs6/d9KaThRexktzqehSaCrusz1LD47JMVdE1YQMRD0NrTIMgWvwbjdbc0A
6Kf+aZVWPU6YNn9GYxaO7wgrScv6I81en9gcABnIq0u88VlRzpDkf2rO+UK1vmmX2AFcFSwRND/O4iwK
Z96JStAXE00diKcDitM6099qoXXqubqq6/GcAIrx7MMxYWgW5j5KYAtOOWeMje8Td8Riy7DEDGe6UL5H
DSRb8ujxM1ImN8vXEjis6KJvE0Cyqw/E4vS4kdbhV4V3+gfuM1k6rinQ7kfrO44ApbHF4Ol/IyxvffmT
3Wi2Ix1ndCLjBRdRnAdnh5OqcphFQPyvzk/kgtu/ce1d8YoOMYEU209RXZxdsX/KYwv8RKf4K6gJ5PYI
gu3Z6QuIqEupCYyOkzvUG37Ig8h9bA8jPYEmkmuv2bXW5s1MgpaqVWgsC1uJOgiV55Bw13HkmH3KYwzF
8NB5RK5GmsvfnZ72HVA+lLANRJw8sA+kksrxEVu9T2iHA26VX3LvQUD1vV5XaHlPLFSetqtVRbf734Tq
b9t8MtvLfa/1dn5DZTIvH2W4NKWueeGRi+7JEYR0iEsA7vKKKyhaq1icLltBSwryoCjdWjDFus+6AbYR
flSqPusT6yibsU2ohiv1gNEuMP6iOe69bolrqxT0XCcWlOx9hK9jp0HsD5ge6GzpIZu0cs9BsrKQge+j
YSra6OfGmZScDdXbyanWaOc4ivmHdPPec9juvJf28FLrN16ZPhesaqGgJQE5cC0L/FVWcssKIHop6rgq
DVMbKoWzz5XQ0iSqdwbveH7RFkdn47RK6Y3One8dH+rqYttwIbFv8RJPRtsTg6I5PRMxrwgwJ9ZhqAIy
5hqUpXT0UW4qJ5NpI+iN+4gOjfqCC/t1ltPLd4XUJ8osWFIMXgxYjUnca8GP6YjtmuSx+8cLCloADX96
pD7MY4FMTV1sFRRsiAR59jwRk+LuMJIR9nO+1dlWxW3NBp2Z1Q5nMhCjokMrbpe1XBjGfOY52T/4KHjO
MulMwPLw5rrjS6ww5tY2ZR8DDOAA4xb50Zb3Zdc/p1J71LNsqagSduJAWB5BM7uiYgZv3B06yBp6K8Uo
A+YmhkMcIHRg8rRWbv3WrXsc/dkoR4ydXoRA8+1I78CEYSF/9CIgGCIkXZqHuc+0vZ6EitlA3uGAa59I
YJA1NVtcfoEN2XR1xAvgjXUmf0DxPXMV+ofGNjKWT/+lPjgbgBlbZma0FuVVivzig31BKlK5Y1E2Lrzg
9iD/6L/lLRQ/D0vX2cBPyAteHtu6maFpkZ3hxWjn+cU8nD0P4I8JJigj/LcNln93GRqyatoqKZZOoaKR
9FVBn1VrudJ9EzKzaXHH/F6EbDxCLFk3yvZlZXP/dBSPh3jI3gfAe7M1od9vh+yR2+JYUePgYCH2SOTW
qUma+jIzIsleZ2k4ryHx0OYnog28ufBWYeKQ0926LMqwoHGBhfzOeChTSdKMfzEBjaeOywp+DYtnZquK
9FWqveiDiJ2ttFqo2mXTgDSL7+AJbo8NzdAvOclq6iCvv/ojcmIOIkJhXfZaIDANbs2C1s3HWSXxbSgN
7BeWRRhVfoESnIDPyyFbKZ8Xa/DgWl0uNmYT6ItA9p51ezz2V5vmHcYOgTkFxEHFsLfuxpZENXXiYt/1
n0KXyQ3AaCi2sWt//vausHp9hKTvW/hFKzUvfxeWxGc6knfqcvOez0ZGUBSmUehOK2387ZegNrU3tnGU
i7lgpmiinIjNNCDKVCwe8PjCaQcB+FTX2QwLZCSGTocyx6AgImeEx27/QsdrQcM9yFl/Ni+QMNhJ1dMo
zwInolXzT+rIeyxz7X8J6D4CylQDU67gOtN+pPf/Vcku2Bv2I5WVKAeyM02XgOXyKb4PyGZ7+8N8l4qQ
LGljDDrJIwcZDK1jAjAcj2zIvDF/PMKimv7pimPHfkj8tWKMTsos8sdE/UUblp45br1FUgpChRLMzKtw
lft61VFtAMDur8QUNwzomtVQieAWnH3cOgxoLRT5+3rXL6HB6yaCpYURpdYEY5bcDEGwCe9RaM0r/u6L
xoNLxOZrrmJFPDvx7A4GB8frivtEBO7BWeHmGI0bBZlRM6gQSsQ0aei7VbR1/DbgeSFppPL+I+wn5R6S
wUuqYwk5rrsivV736ULympbgcTY6AzznJxTxVeB41EJ6u44Vr2UTXBbUMynHg/ZnAeRfLREljXWfH/KW
EITZrXT4fKleq+PH9dIdNF+PHqJVjaARH1V6Us1sFbFjhU+5VIn7jaZIpZTV4A4ke56Hb474W6/Kjq/i
Z49+GU+Q+Z9wR7VJWp/onJwTqgZeLpPfpUnlskZJBTXZZax5ql5DCc6AeQG1tOJKxeiG1fZ7nZ7VmoTt
29dRE+b4XxxeJmdcEzUM75vg/ye1LFcdhkovtUi/asJVH88/9HLuOeuZe4hUSQY15NmrHhjxJe3qt9IH
5dXUgljFHtMoLKq/iitx+10bjIDBp7jvOE1wP+PzwU9wkpP+qyNN8almTXodbazqIyuV7SeA1ZG7050i
aD6IZbmfdPCAJZyN+hn7cwMudU85mfvqrbCo8I/dA/z8ngRmiQ5uNO9uKB1yy8/2qa/A6GWKo3DTBVwX
/q3BwXipNhnY8IIPeAakOA3xr8X9kDFMzCOQIfgh/mdrLoBcvz1AWmB4dltFU1rZ7hOfXhN7nRILEcl9
LCyygFTVpGGEcW4SevNZ6mzGPgfcqYlA2U37MFiG9shJQ5eI0j7aRSrQph7PwXtoWli1u+UX2WL+SCwG
SyoQGVQPj/+MUa8G/7DVnuIiKIxg4ORD6pgO0EzmqZ20xjCQqM7P8Fvp71l8+b2zKc5lNKVraNgcUlxr
SveUjIBNffMFqAFrBfGEWdDFjB3MBmWQFNtiAylzpPi9qDXKKuYxs3zomX1iNKKN0PVyfs+P5GWP0zwG
8D5uD4P8o6cwpZyo2ANcV3mTj+AtkQegnSDkZbRHbg7HayqbwiGcN3oRaNtrE99lTKk2cUkyEnXOqsTU
jMK90AODVTrw00BdDh57pjCYI/HKc37KT3hHg4n760X+HawGIDQAbJYFtCEYW+atMn01/koa8feDFqB+
8dWTJqYrL9iwwVKeWX2NqYMB/KBgs4TdHr5wrRwd+JxPd2ns8/t9J791NbRtSfqEzLb0zsbfaYIBiPfD
LBcefaP33YzDGzPML7XiGn8sSsHByfydMR9hWINVBXT5XR02UG4/UOKO8oDttfRq8e6gGo+6+rhzUnFK
kDBd8uYf1KrVr86TsAuUJ8gJsITfQ+qvYqBOccJXiNZBOZnGN67JbZ0adKvPPLDZHwPN1RKYXh7kCI4a
h/3rb2tCuJdtENLxOYPkwKDqBl855XQsAv/81DUh1/TaksSpU/gyTkwS2tmlAgnyKsqh34W8HzksEG4w
Q2qhbW59kvCF2D091QHjUZSNUUD8SVNWj/IwyTpN59LAQMBYN7w7aAUSlvP+P6iHOAGxb7t19kHeYKbo
/2HxzVDrO27lRPtywwycdQOTh/9hmmegYQrowtDBf7nxmrDBgZ7d8Cybzcw0vzKjxy1GBxMTokDZ/+q7
dAJcMWFjf0nJaYLdTGIG7XeWkIELAACucflFCBuIEBu8srG5g4QiRtpQMWlwm82Jt+jqmY3GmJeF7r7H
Qey2CytfnBtPzWFMSOtzpE/JodcMILCw7xJ12ErFY2O+0rqAaUCxLpGhT0JFRoIl9yRAEsms/PwTqfUN
43bPjQzKFcgVKradj95Nk4fTXLiXtDjd+RMVKo/Ch9UkhImIBUrz6a2jMlWUJWq1phn3c//G5sU+vUlP
5iHWuhsJvRJym29IcJOhDlbe53mRnwYE2iIy3SU7uyvxEUZBYV8a53ie6M5aTDe9BxMuajuuGRb6jKPA
yLPv7zx7G3DCxpKbeapHqXXBCWWeC74Sq2oN8E9k/QwmJWHRPD6UrU/23Ue9xps0aL1zxJ4deBXW/z/a
x73xMefW/Carrs+OpzqCRbqCpjHGu5/RGaq/Lz22a0d3UqFAmwD1ZFjX98Px2Wn117aDwDQmgIIrxdUw
hfPEk3VANE9lv85JSDC7amZLl0e/O6hxoHVq/K0UBsPb5F/AJSsg7m4QYNhBwJcQ/0RlIgiIQNKglKCb
ssEnMh5RyTUq5WKPaWPPKygvNvmiHY5Pyy4eTvJLHFyqrfZJxLLUD84BmM3Od9cp2lAXn9rfLzVH0qjC
npPuMX+Y23x50MlAhTSrkVPZ8fX7T8LYQ9UEjoJ/GDox/0e0dcrGLYSeeiY1COfwoOXRQ1S62SF7AoEW
+j3Q9i9BllHkzea/ey6blpTA+kE1/KQNEC7toAQ+ngYAEdVVzB/mw6mdMKEcBB11MXx7UVvzQyWw8KF1
d8OOcqz0B8sMuZzH/U9jief1IrqwgVoQ6w/QGVoNg3l3UpSgchmTEtMSKgg9zcoCxh4LY6SOLZRgvqsu
5rEFmTT1xsz2sUTfeNjDRhgHNZpKK1SGguz2jJmrH5HvTZ4h8TiTuW09zpIsl73H/f6aKOq6+a56Nl2p
lQYISQcbfD+Q/IdKPAshRoR02sCe2VOJ/gWU6aZ8GJVlmiMA4HJjLhAAKnwB8ERMKcYNpiSCYSMqsyCN
mGAYpcDUlJKMPUyFF0D/lshanFjaVkzdMbqzJEIRjZ8ureADjq0sEBsvJOL0yYbGmwl3r8icWW9FVtzj
IOJ4pPGCLzMAyukIjiS3TzwOD5kxOvmGDszCMOk5adbE0ornCa+s9Wd2Sia1vKtNw0WPlgP1ZK7EJnQ7
M5VFlIcj+JrYwmH9Q+ck/2OqSexynCTgHb56lJT2E6NaVnDRalvpnxRBH1XHrChuuq68/KJbuuHbTk3U
y8A2p0fSinHye11YvfGuezsOzs7V1EvVNeEir6z8Q6y3uWza5pmoDualQ/19yt0SLeoDIKPCvZcJ9aNT
EaKFNRwSoEet9BCZbQl9zUTwWCzQ1RlWPHfQo4AHekD4OZ5ymNkvDJmfdp3h9/JBMCZTf0HKWzUsTtSP
/DWdq82Ye+FvltFkHH7uOZ5wXogus+xHFSEKhxRvEQL5I0ZheYxjBG77axU36o4EFkEm8clt+JqvfQZ9
+of7xLbqqmpCwN53z/lg2TFzB5J1n4R+LnfrxYACfSW5EjZwjrca98o613ap/ZLLAtBpFufFyWxQ32Sm
rAA2yYIalOktgLauwM2GpGCQBPMMb3I3iVr0+r/Xvw70ACDredjXDan5+7bIGdhSiiapvylP9E/UvqbK
RFXQnXaX6ohkkLotHGDHzJVZod9U82rSRt6ppPxLQJ4Lygd1KHwTTzBSCVsDXS8BJ0DZidCpV2lOXopj
OhyOIYbC7w0zR8Fsf/cI+8WndcWEJO/TcPq3WdbppDUnjqLdnTROmaz6MQJyMLrv3Csz2WXp5hJkJuxt
2YoyJoY/L7Dn7z7vXYyOc1W8FRDe0JPRqcCXBObc0VgPx7ax3WvKKmazxJCxACwh6ELWH1x8MbgoLqzm
V5nYShteh4j1EMyw9GkaU1XsbiLChrAtecYKfiHApTsswYwShGo4TeN9A3AqAMyYpI7RwhMCGyXWLsHQ
l6VTdaTFz31NRCYYuhQ+k8QU1MchkwZIvkvn7y6KuObAijbRmdPEbCawHBeqd365PqXe21kk4+83EibI
n+LnsXo9nZQ27bioFfjx9mr58NLeoSFQuEbul0ERfYPHRSAv8HqKpfpc2Ao+oPS90b4IGXPPRG4Hi7+N
DPT5H7Ix/5Hz63pmlBdKlQL+zvHhNeM0YWBvMYqaROWNfF4I6UTYEbs8/XjORO81DgRIVnclxJxU6jNn
9RQjZRLN/A5YAXcl8TBuMyHgnomBLlgebmB5AwEc5FxETajOxC6GwA07230nrpKCXs0WGWKLlHVoKNl+
wiB1HGwAo0ekMwLSBQylYnxBhjySycLXpyWNm4jqePUATcrerDJQIPRaN2nC6mJuUXMC6hFWYf32KMjy
sgulIQwkUinLKxqppfOdwBS+UXemt3EV5PlLhZyHMQG1y9lgkBy/EBnZgNR/OFGd0jFeAJ0yqe+qzCyv
/7Xa1iOzDEwmip5UvPh7OROQErAAFLZ03HejxrtG87mWbKwSg4rMrwRUvndgTPMSJAaobEfeIi2eKcSi
G7AVb+DJP8hnWo+FS+Df9WkUFVJt7pcFyT46Fs+L7G0SToN4Cxw+eQI9m5zH/F6KsXvx5x+XRt/OmMvY
ZmNhPne868yVTTXq2Qu//IK3UmdMZItGSZhomJ79fcu5JYCmjwEzPercGUGYIQ3/De8j/AR8ERIx5bcH
F9WTxaSXyBManTwbyss2SD6jLydUtzXxpyQ+vkedUQJRFtwJ/vUVvvIm4DXsRY0YD0Yd7AMK2uxY2fJO
3//xF8FrcCPQLChvqlGuHqgkU1rDKQPnTrWIZSOcxwnNGaZQ1mOrWqF5uGfnVfmsPqqaFuMzh6nz8UiS
aXHEFBvSLsVunU6fIJemhMAzdyv7bxU40O9RQYhOiArj0mryFBRJb7IS0hNvs/Vr2u3c15upodshVzT0
lKAky35nuZWNDJOofU5eaLpCVj6gbQ6Q7/0uYs5Ew325lIxLem1E+aha5JJ1IA7kJRIou+jFtGLIJJE3
Oq3RTp2Or6zEp4/nTdLIL0JzvHiUTDFWctPNb/rt0A/KCGB1IvyD52B9AXwZjaO8CbBQlIVpwtGr0Wbh
zyMWd60i+VjgyA5kLkpABj/GB4H/8wHUXNPOrZLsDK0+8qNpz/ML9YN1f2o3nD1T5y4SExHPpfRGcqzM
r/OUS+KXzEPFJHzKJotHC+/IVZJN2Ma94vv33b2knJa62cHtfmNw0NIW2h1UB+ZFgIuFVrIuUSObGc/5
gP5g3JgSuXEm2hqoE6PHN9Agm3aD2GFZO4vz6nfrTEllgcHUOmQoFVTRxy9NKO8Zn05XNhPMmJZ15Sbb
eFNl+1CCpUSat7t85YoOOR7sVSFZmuFN+/OB2XdHK2p/SaKO/6BhBYUJjMEPzq0ZBRGl3y5PLgPwnaD7
CGKw3Xg5gkEYywG5twCO64IZo1bpr35AeHqdov1BzapZpV/G40R4T1IpDY6wS1q7gtLM7fsQz3rFB9C5
twJEhYrILxq1KlfD2og9cMGlnCvbwfkIDUEgGmjB9jqKqrEFwgCHlijD2oT7auKQ6fu0LmjK3LRJHDDR
mCqDyN2rdsMMX/gTZClpKnu/E/5M6gfbznBS6WpJefV8nYGyyl4w8++uUsrZ7aPzo/YCOByHtkzGifpb
lx+pRC4qs/8oOq3z1/NPzUAxN4J89qO+qP6t+xM7hstBoF81N6zjzGkc5631Ilxk3Lmd1S/nkCGM5iOH
iL2EyMBF1ouyNYpf6i0DxhC2shvD8jz9ly4f/kH3WoKvqKW+bTw07nZ942AsrQKd87cXy90RR8gQl8WH
Ckv+e7RloxlO3OUWm/g/0qCod6fPxAg3EoRwpYDHFKVAghR6lqiBmAOlojXnhpOaUxdcCl3i9Bv0QB7K
KO7Hr6HLfM3ej7Lz6tN31aNFDQCHea2UmAw99N57WpOu+RJMo+ZadHvxbQhjdJq73sPd8hdsrqedkOVF
sjTuLPL4iu9pkCJL47JfHP1qmqkqP6wVgyZ76MN/G3kby7jpaGU+VHvxtwZ1M0FXt+vUxlRcepN8ChGx
8ALxOp4h8jGPsWYrh5MH7Y5C9TfQgL80mSJcWs09f9fioUPp4QLGpaRa/BxCrYLLWVmiU0/ypINGOvY/
jvoECb7pNcx7B+w6LRJKfaVfThyfUSOjupS3t9JBZpThNNoA5uJYCAH/xhi/g5R1dU17uuNXCfFchcv9
WiETJheqcHKH3lSB8b8ctH6umd5na5nCPgf9FGEUBzxZhmxMwjcJlztYbowWvIm+oaASKYmvyQqbui1K
ogmnvqMrqlgfOl42dpCmESlvDmcDtz/IbWQE/2HPyQ/F3I2JQczzS6KfSkvQg95Wy9bNwjzSkfP9vcCF
BIlfIdPTQGcf50CDuNbFDhQPUkD0nvCuiwaLCKs1SlmvIlpOdV5ZS5nJBr0SHbosCi3oXL+LdlXbp66F
Gy2bH+tUgpwiAD/lmDUA0ioLU5rhIqGkWplCYvt6mf1PJK9IlyFY8kF1GjXcv6rG4kcZlxeSgbyLfgtV
mISOnuPzeHQvhCf3Bxxf5cWMIbIuDICLpm/vufWVijSzzZj+OjKAN33IJx/V+xlRVtx79UNlpkJjL8Nc
+kUpZ1gp88gr/Ig3m8UlfpmRXRoe2ImQCQwkW+JTVhAbqSOpYMV+qlpnTVtEm8KnA67wcMknxHdfU+0r
CLxqp7MP38mMONDMd6DkPDtVtZDeLfA5WqjuJi/u9itqH5OpcFQFy38oBsuTb+ty2TnqGh3AEfB/VYkz
WTCzsObZzVVhFzmZiQ9/xt1MuxgxD5wjnF6pci6O21itaU5DO/fYuFuq6vvZGjtLjRkKm0xAFEsgk4rj
qAL1C6ii6jzqy3PyU/ZE3a6bQ+akfWO50lXQqvI7c2+m7Herbi4e+D6OZfsARJla2o5UTKLgUBti6/M8
fjvTQu55A3tzcqrIHsrVZ1ICLUdcZSYmA+UhTLWLFhiEwkNczsaJZKhxNdwaM43g3wRu0ibqwR/zo6pc
8X7+/EvNPltK2m3EKR50ts5BHAkGu9gQs8qFOt0UCbyM7Ra4ptsyVl5HzSLArJEk3JM6roJN8iWA/NXg
+bKoR9n5pdeKacKlIDUXgYayzdPQ3ocmxAQb6QoyMKoacqA8fYxo8+uhptlZLTLzIU3l+hMsPicyMCC4
m6QxyT29x/mKmy4e+aG+SncophvbGnpEbhbFqcQQ491OIJ11JEbk1MKW19qLVdzy/2nGujIqc/0vBlDo
8cQ8v08opD9zrT5k1IIhMrixEoxvV7siuxr9Da2mCxMvQ6J65mRiiDL0VsUlojDve85M0cU0OY3Sbgn1
HzxnJ/DDMmufkZfeg4WNsCjDkOm7eYuQyV86yPIbT6Upwcwu9i9s6DqzuIOYzAcKwM//8nglyXflD4Si
BCMK8B9I2/t5Rcdm8fyfPGsso3KzGYh3oDIjzTFt7tqBHUxX4s9QODhhlPvhmXRGTAAr3QgsIbmT7Dtr
hOFVCBE/xIW26rsIhU3+Di/RFbNrX4dYbqnvgd6wjxlnvz1ECKwjn/n5DROuYjqBEsuFhgS5RcgJDhYr
R2eGKvLBRtffNsGR/Y9B5S5i0QTHlslzrC2LgqX73QyTy+oIrnl75MZD5eAFBwhjJ4VdJ+9JJXewaxqa
3Yi9Hnt4pVDiPUveF5azi2b6kkLZ+zPvYnu9SqDlddeRztJYJFh53IApcek6ytIvwJJ3OaRL6bFPE/Ca
SJxT/fouJt7Y4nHvx8n7M0rOnhzkLATGh6GzZ61pS99B36TurY64jNItMyDAYDUqjB9KUBT0OgT5CmjH
wXsRAC7qZ0FJnCNEfDc0rAQToj+I3ETrq78hXZFtttkz+kDtJ6OrNWDApP4z5SF9t2sJNKf9FmgOKv6B
Feyfv1Zv4WA0/nK2XvWLcV/qW1XspjKh5Imz5pU0aX1J7IeSDmilPw9497gBO/w69BPz9X95fgbdHSyM
U1TVQ4nVXuAVHITBZdYZnPvgYDcKBcSM2pKQpCP+q1Fn1RTjjNPQpgksBuOEg36nhCsUtT1QZK+05yOu
oO4I2Cj/UDFE5xgPMumecqu7GSaHIyU01SZHjjrzRurxSISVNUIz2+xrBaVJVEVNKjh42niw2ogEJDxW
AtYE9DbDax4mByGVk74OfU968a5IYIqLI5rGG5/VIjsiPXHFhd5qkblAfyoBPeFHZzD/gahbbjazaGs8
wwacPFG4VcyYlo98BRQVjSkGdUwJkA14p8vppYpuAi6rH5mC+uS5FpiaYNQ+ykdbo3j8Qv+o865YnUdQ
o5r9XpjjYhMIPM0D3gr/VLzsVGezXWtZYypPHoW0iPOXHZ9NpVuLFOtlH6oWUbVh0eDedq1KVOw4STij
Sj0wBQQDzg/G/Uxs/wF5aiinGrTFHnto9j64W84dVER6WCT8dbpZfyVWo1JPVvvgbDOA1vDIeTjqK8QS
122G1y6AWj0BTG0kg/K+GMxHxPq140beCN6hMOtFg5zG/ZI6yt1OIOgeH2+m9Z/39l3Evu3kz2wfDrIA
asoBlLfQjvOX1pffYI5VRP+N0DvnT/W+h6C105nAwGF00i0DhIQOHnS4MGas0KBxJADegC7JAJnjTJJn
UyyDBaOR/5edZoLrvZ75iZ4Gfz7OKlSdF8UItXRvESBMCzZDPYvB3QPASvo1t4P5aT5ADm67bTFKtlds
3AVfCe3HQ1w3mO4aFWkwSz8rky27CPRpS3pg4KFDNtXGXnAvPDVroix1riozyoe55fOp2AltiyhKGEQa
1z+cdH0rzfH+RILcOJgUcJJj1U3WdrXp+qiKgcFIXASXbgVIwNa6inte9eW93e5hNt54cnB/SiyAzuZh
xdaJdeCeBLjCadgiFKHx5+oDKYHZaVqMSE1uuqLkt4a3nyGd9ao1VGYaf7xKs29IUkYRk/w0zRSSU8Md
0oSbVcDh2W4r6d1s4OU/x6cNqQk6ygrvZrKyZ94P+Q6nFnkMKkY9Hw0KFkYpn+14+o0Acrh7FqvUAFJx
ANePac6o5FUYtV4YNl+OAA8H8wvFVbL089TuS5StHKi3mkDQEC57KD6zIkDsYah+17bZp39z+gW8pYY+
aijZsT12AV8zgTfDnf7tevVTR21kWstssOgqkbshQPQTibukKlSkG54SVjceuYftp4oWlBdzLaXzpQlf
+4cDpj+xr+bfoXmVUvAufT2SDwVn2iSDrCwgFByd3Fw7FIYz64Ayg7guiBHPQKARGTxQHoNgMBAL0klp
hRssonqhrnOF+7k7FivcwtDJA7Me1Z/lbGrDFf+EeboMuyRkEjuRE+qaH7DdV/3nqu/09Zi9q87LA3Hp
yncNtPIF72NDXSHz4xNuUceuWvgprvXdse9qENnoIGQUR2ijUQWU+SYYMEyCASjKsd81Rz56uRSxGoB/
b8/aRm86AbWVQbxK5tlJV59LybTbZwrLQAanPzzhd5Zmj04KXBq2rmOkiYyTuflkDo6BYC6bcINvBhVG
M4hckm4buocG2gtWBbkkYk/Fl/82kOVUiFHTeT1gcXHqnciCCxYlQNrcmBSUgxUf8Hu5hMEfBVvpBkiz
Dxu6I3G9CKePmnyXbjBTBkiCfXvuANeoYBdlpI/UGFufcG7LlbfHRsUwKLZftx7H2o1QFbGNU02RidNN
A4e7KJdQAsPuZ9Iy4fI0wDXbJYb/lecslmc9Q5uv/XwCC7/lWNstOEy8PkcTzFkv+Bz8KJAA650Iyjm0
Shp2O1aL3aYJcnBmf389OBisD67rMEXv9pyC2cLjKlIZ2qQSrHvk0LfYFHZRnK9NzuBeF8zM5dhZJaJM
h5IVzsiZA/5wjbVbe7gjjbuZGOysWE+Zl3+IzV96ST9tkdXqug2uW36671FqSbLusyK8F0+noVr0ZRzA
yTiT3fAx6jFKhe+Z2/oLziIOEMWaM14BzF2ZImdBO92dqkCZxGUfdlqSnxdbEeWqCS8aXozmBvOcz04g
1+MEB0S8MXiu24cZJ9MIzdk8X/S/qDr+02sMdVyxaUFx0MMlJFSjwhvtFAEGPUnmRU4RJfrm4Cw8c4AZ
ugoZh8vZVa7DLqDQrcTCU5S91u5sIc7FW9/KAkCASJM6Bmky9YYTF8BF1XjZmPrtfUEVReXKZ+BrDEOh
0ywzawG9x5+hpv7xiyn5zyTW98/aaYB0nwgRuHXH/6RqHJ0IgJ7oiQD5mv+EsDol5Jhzhm30mLcW2hLz
srG7Tv6GsG11VmYbtufAjVItteJ7UZZ4s8YSTt5zEyHs05uHW4SRM/tuxqDTeqxLgpZ46ISKvtxpQyhZ
HC6TYDiZaHSAZImofUEqjbCHo+BZwKztvBq0FKmsGsZncmUKpRzOhMm+NwrQtEjC2v+8zoO8pRQRbE6u
3ywFH7pgeaB3jg2AHTkTMD/86oSXDJmta/6gGtdEWbQqxKzKcCzPs97A9XL9wZmfA6JNOLgGiGJXTFyD
kybDUCr3gz1ry3S3oQR1+QnckITkw8lQ5/PjDJmuLRPgB94rNrdO0jORNVe+QWKRL7jfqjNHdNOvQnYu
trXi7zR0szx6kPD0Cia1hJKTh1jbmkDvBkoxUTpd648v+5gfHsA/w/ClPxQIRbHpbxfFSnKQAmL2ZSfa
Y/34QMC+tie2+t/HzbWFYNklRWhnw8hQvXBQexglIyUPjQzILTXEDmppEa8YTVHFw5bGM5c5CNSqoDs+
Z1EAsT6hN9Fo1TKIl7T1pKru2fHFOtaJYR7her4HV50Td062qwpjcm56f3Xad5Tgfj1FzvNGAd7qVoy7
LwJAsblLClxvL023s985lkYRZsxuprNp+rGYLtpZOj/BiNzUHbYcpQVAU+AG828iwfw4f6NoN19KrNzz
/0ALTebUlv5uiRk+ERg/lJscrxU1Tqd8QjRYFtXKoxw7ZQOXwI+mZSsG3PW91BCLSX+waEOIwIoDVfOR
pkT3YaCXZBUNFYEicOJ15n2EtuWsP17vnqreBmB9vrFTKeQsRD5oargk0vxTap44Rtf98APX9aQP/KEE
kfj7Q5JGHB1hqqXQe0AWI/Md8Qoen3HSF3wcFfvxC+Bfz3bgX4FmM+Db9AZMqX7hy69eQ6pdDl00uPd0
fVKSvU1v/rC/g1zTgStwMRdcmWjsLkIfB3zXKKDU216WH6YavIEIzQOd74wjqrP8FrfZwvbwkOry/Vp2
Mrp+NnbIPwb1Y1WC569WJ755yY9lCis0mwBUbQuqq1zRqYmNXJp1sPi9AoS4GWI834zIXEbRJI55rfyb
eDVS6Lq8xvy3VF3te+91OEWyj6flq4DJT6zfrwLw+2eKMOAnpdAEQza320ecZzv4bVablJPXvpzCiQDw
5YLlHofP970MuvG6GPkJxhO62q+PprejqskblFdPQfpuOSb86zKBBHSay+fqGIQFEYSd95oRjXGwYN2u
SEnEPE7j0LC5MRZApfFUArp3UL1TsUQAw1/Lsv5V8EZrOxPiJqBTwutFauE8jM0lv9hKR7lb/5cLibwz
aZilK0o9CmkIBiWO+I5N3IxN2U31GzfrTmV/gzAcxcUQLrn2c2L61ndvbFc5SS5LQZJzP/9/fHgsH4d3
ZV8oKa59EeT3Mlp9yBZOKBNLHcPN6u2TVRjnKEE5Wz0jLoO9wjRb7g3Anl9UKzt5jXLZcfFTLTunWqiS
4nDXsJlBGHFPl8scqThltgB4Zjo2MMljIM3PQffaD2M1VBTcaK8W2uNB6MdUAEzdyA92p4DBHW9shTEj
bgHhe1Hw6dnjiRRHQITiAV6Y7rb2eDjDDz05F/8UGP1uCPYVJdD2fLU+Q4CWxYK0o/9lHQ13iJEvtJWK
duZBVPMDW6jBWvJYI9c/+GPMJzwvpdWUweyEO+muXDQ+yHwQGhD/Pt/K/AjYfntGgSRbPri/RyERNyUy
o9yUptbXh+pKSDlkT98zv2jQWsq+UESSv62g4q/Z6FspgkjS+HTUsWjolaNBMMecO2rgrINbxbmX8/rv
9UXTKwbV8IyvRrutU7lnAnxeNFOBA/+b0G2SS2xz67S35WI7/+B0XyeQrNMjMYv9/UR9gHGIqteT4vxp
U7SxFV8I4+dJD9uGuLdJas5bKaN4fUkRU+B5M/ErA7A9HNhHFSR7+SrW2LFftdIb2HT8jMae97whli19
lVlPPFWy/+mYpGjCuoCKORftXt2q448O8ZISTDL6fdY1GCLJy9Ds5Uolgfw+bU3I4xwUhIzlT+VKg/uu
G6AM3T0PeI3Oadnw/SPh63yRTW7Mb7fbN5+pXVGjuS5LpbzoYdCAHz2K5fvvz6/7WHzxcBdJRsJuqwDH
yOQEcXC0O5G30wlAwqG/GAkc5mIGV9j3dkSorO/nViAhryyZcFyCAK2YAK8wvp4juwCR6TxkNy5HLy0V
/pmRsK3K/eljmkflhPqy3aWsPOjyeYaOy3bb6fjj2KKAi6A4cvvLagIAPlNCqxytTyQ8yu8kHfqK6lWG
0ygAvifxVgUSjxbsPU+6yNMhHOtm0k/SlsDmRS01tQBPSYcvayhOIJRkeU/3XG1BZTVavkefTHSroBZA
InIQPE9zuIxVN/rw8apuRI4+hCWMCXyBxV8sfK9fsSHd7Ua3283JoIyUzgmmLj/Yq7RQixOfzFy2tEGw
M8FVZSFzqeXuZ9YJB3io4V6ZzPR6CJR3NCuPEkjkpbXxPPEWcw6IpmamyM70qXL9s5aOLtUuCnTEKd2S
fFWF88F80/3fSB7WXz/ovqfopdPvvan80F3iWF4KBggeoM9Ug6tK88o3wiKTh5QmH/CC1pI/8aAV/TTJ
qxlf/q0ZJRK/VUczijhaojmmqExsyKWkzbR0QD/UTGOr1oDTqe2h4WHR+gFk9lT1lEtOplia9qJuGB7Z
NICx7/EKjynVe2dEntr/oNXVoMqbj6LHDvihGIiundimHF9sRpyQPZbQSmtHv1TsitoOYdLlnTffgmKv
pI5G7zJt/UW3GHsk547boq0MfLCoYjCUH59gCJuhVdalAzpzBPMSiFzeVWDDgRxObCZ45WDpEqsMxP8m
2IWJIDNBctdOmEmIbFeqXH7RGS1fW6T1V2zoEJrm7SL7JlXvb8GQ20HLyVcRCPqrYhwtKYyRFZS76RG1
vtreQdPN+Zq/x68Iylc6XikcQAR48AUcL6LA7pZke9LRmnXyrnbJsxqHF0NkmCucom+jc05g3oLldQWZ
eSoNZvu77IopWoLDC6zQ3kweDYKsnlpLtBbVDVJeU4Rs1478tZ2B/x6vfkNHeWs8RaXawcKsFa5ZvNaQ
jYe8cky53jnyxuWxVkg1vJg8aURHwMntVLyMQetec38AzcVWajJ95mJk6bexdx65aVCYDn/qaBSMLTpw
S/eC3Ih3/g+VVC5aRbLeX81YTBQkot5fat/LOTEf8q3YnwHOmPBydcUImMCLqpohzF7VVvcbeIUwZCcu
02VWPWFk8uuEDBeFSTcVfmfonf32QwamSxmg3ugnQUu1gKSkB0S0V55qCr3HA/o3MV3zg9Vw3ytBB2ur
ZxB0hhXAaH3PS6LsLzc2Cgfb3OkYpYTnl027mWsCxk4LbxhtRhJ4Q2kIM5p89jS9j6ptR4dTDXwu1I+X
Ry6bfr5A7YiFASMD4nYauTmChjGZ1jP2POEtw1eclB9fETL7U1VdMnlCakzX4DLwxcotvzZe2uk+22p6
0bozH7sy/bjvpjBRJNDHI798kIGQj9Ylec72lwwe2wdqC+joSdZBgzr01k8r2aYAEGHgOoPQW/z0d65N
Oe9BNG4NJKAXlFUBa2SKTZDgae75uWXuFEvrMqh5/+adbTF+NUZo0KTGba9JCFriaGuXazfnQcL0rbnC
v3bxGQ8TnFPn2kz+dcPSjG0NNUrYsHXrruLxdeKPvL8AclHtgm6ua8S0D3gcppTm9TsbHkQMHQSKLffv
OuEBVifU5V91EacU3fWn3zzn2gOhz5CWWNoeewmIXkXvbrPHd4eyCqaj+9pBFmKPvL8sNRcWueZGjbgU
6oX2OocStxTu3/BXzXLJAyzUSz5cxVpBKoVUJqzYeTnwSjI4UzxNNXo70SHEiXEQK/QyJ9GzTr++46/P
CpANDELxvhTSIEOEjvVkjGgu1drfDJ4pOy61UY9PEQcCjChfVA29gM7H6F5FZdRuQNXI8pITpZDe0Q/0
/4dlQKRYcLdsFwxsLPBGynkWyJ5GwOUh5Vstdt4fvnjZ5WLJIOdA96JDd8e6MFjpwpbu2AKjI0LdB4JN
mt7vUc746eLw5qgv7qVUWaIGXT0sSITGpNb/GtkRaCuL2guYxfTtM3bgzQ5EkMq6ccxMa3NfgbGYY9Pz
UoVsuDaFXnYoz1fTzMPSWFKVdHH6ChKlbdn6Nx0pfWIKCEheEJgmq8pC2t2eKr9yCu6gbvhdY4cR5qwZ
flExRYd6/qiirW9Mp1I6yGZM4Jch1kBbtizcRUKOOIR7EePp3+8kiLmODXxKr+1LOGtQ7K96TBGYwygP
VLBRCriYweBDczJuaecijLATNEn4pJ7U78Zy2LW+TRogS5CFoanT9ExZ0eCAujLr2xJrCyIutgaJ/8Fh
2XY0sg4kV5KHy0FKOW4cvFuSlONCyIGntL2AW+dijLPOw+MYv09Y/vsuGKmKtbxn/zJimRgcuOMks//Y
rqyu63WSV3inaekpblFqBLs4N9M/JRsE+MZuDWv4SyR73dyI17Iy3WrQb2LHOXW0W/4KE1mP3isFWBHa
oY/fGk3ECn/x0w/AL8uh7h540HV9RgT+bAt6iV59NZDEpKMm0BWl4g1fiiOVJY5sHDtg9x/Xv5bm8v61
u2+BSbAYNqAyO7SeHE5awT+5hOcFRbgWHGkdeqnz5tl5GeIfRzoCHmTx8uKQjh9ITAObpCG5dHWoNT9P
bcWvF+tQDi+TVkIokVHrH0fPZgnPrx5O4Hr6KlGaSt0QU/BRwH35KM3wetL/LNVQLnJKaW2xIOiOGAe4
lLXV310j5hHd4A+/8aiURHP95R2mLmmgNpDPZJzSedVdkppwdYGvXrRSf/nAmnnS2hhfkV5QiytjLym1
r0JEId5VF8hNPR17mSK/OgErr+6wOQO6plzKqH8yRcPYJtwv86hLTQy4VXiyeSRrJcn9bbfGUpoZbBhy
5KrIG9pKLuYiKTWITK+9fmMf5Qf3+/m8XQQXqNW2axjWemYjfxLT/t5guyn50uCa7w+FdwgEKs87O1t+
9GFlwpPoYdDEf+3J2wuK/dHx9JYBtjnyrp+oMffx01abgmtCREUDWEAhVV2Dxb2LiETvKYcUKuC3aOqR
q2UAjrmjur8DJ+s7TM/E/KwzE/eY2fBR+DMsQLjUGR0eIQhv5j7EHVWLuTFcLiube/l1c47weo6Kp0Mk
0xrwdHSmZIhNflXsZ88QfUPhUfQaHC3NroZWj/shU59fHXe0NTAhTgRam0elhqMwzGIonIrPaXnfNCIz
Vark9/Tfwg6vjUO0TmEQZ+Z4bTn/lEIrFL7E7sjBjwe+0XmduIW3ENARx6oBd2ZJcPp6l4yjwWPVDVBw
kWW7ebwuNOokkyfQXKBwKIIJYw2ZTm5tBSxTFBZDBvJdLuq8x14MIsXdILffOIOZmM/r2ftjBuz2HGCp
3EBWCEeSk2sp26uwa+01WIh7Y4PT6+6/ToBW4s4VqOpjYJIHBMdDpM7Xs6WBkQ+pgj9dUSLap+2DGYCX
c+lpmp4JmNtLIBZRmLlPE548of+a5JeqKX0S03QE2DGouAVVsrb128cw5vrLfUDRm4c5MhgNLABNQBSq
1lywsQ99p6fYyKPwjfwICJ/z1/U9zgfhomLTe/bu52FCH1GxjRXPac+31HCzyig5metKIZ6IaFqCm34z
4/tsjBoJC6EoPC2Da3M32zw3R0YP887INHUT1jbIUwTnYUOkdRmyyn9L6e/Kfd17erBfYuTKnxDoU8iv
d6/nE8d1HpPsmJ1rV8eZGjOPVTiNsA0osZTZe0FgVFhXPSFeM/0/YjXissScmCZD/84177xKZUVkN16M
V2uLDcZiPyzXTZxOWRJyB0emmCrWpH4F1Y2A90Bj5/NNuElaDyTZ5VaDPl+TbAvvB/n2CfGees6tGGG6
vCrp3eVko4QoCCRjd3F4FVcrfhw+EMJ6yehsXaGlOqGPPh+oWMiOPjuoOC5Cq7FXc3AEnnnvV8HB9dpj
iwEEoRbIyXqGqci/NS1dLpVRzGrw9a4Ig72vFyOdx11SmvkrU1Mbjq3Ht0jTpnPSfSVPmTSP3Dd1ATRE
1GyOerHOEURfn6BgjNkySV0cSREfrCTB8wqGn8ZKK1VHFb+BdeTdD0sOItI3QSnPijUf2C50fr6wWGO5
hH6Nh07cj1BHiy2eaHjZrweXsYtjYx2JC7QZo5Dql5UarVWbjXp/GW70jOS2OUKsme1ZNGTOZu6zurAF
6aZF3xMCda/FZbtqDFbrLBgmKFnCWmXhKUdxzGw5IZH/JOTyIRJkdqfb2ufRfPoPXfy6acSSNZdfJN41
vwMKOZ60rVYWBxO16tqL062rtTJ3N1atFDD5aouUGrC/eJdb8clxR9Sfhmq3Bm9to+jT9CroEInpVDnM
s03f7KPEuRnOeDgNh40YZt/etAL/AW+m/GTVQeI3hLUroRlGQ1rHDZwrR7MRhhlrdSY+5LI9pLDvHS3Y
5fgSIB0cb2r7N5LnmWefOfuMV660lnGfZx6tYPYyxstNfz26i0wp9l36N33NOWXBpu7WN78V9wzjp9eq
LjXN5P9deuYitVfXQErXXotm1ncSNcNmPPjF1nKT4jcnOeWLn4Os0DKWzTxDyET0tFnXmNyK6naCH7Nr
/eBZLZwlLQBpkz+F9DemuVPvHTeTHotIDeJVonkI+hDA8WihqbWd/3IOqGEPJPr+UqS/Vz93UKBJgY0U
n8H8D1O7BnZQ83nwDOzx3JERvoxD3YEnriJBfMZZJk3pR3SzTiB17pKNRPgdXWuhgjhHK/z3VdZgZNKX
2ggLBtMr8m9QpB5KyxrFtuWGS8iOen8Wsv7UfbPdTY4+u/TKZvAAuzhEC475B7sMsn7mYre5jJOHGGrZ
0r25ET+VN2F6X0MIJah1Fop+ZaQ5NZqx6Wt+C/Y/fwi3T4nCrqkznY9aNZEJcTbX2mIG6aLnEQP41pOV
Ad9sjm2WhxzSYxxcLCMfddg6EtpZw4pEsPuMnREy6Lqh6ph7SeJU5mXRvV5K7eB9OaMneYf894mXyJfo
u0qMsCEEtkRrfWx41VXpxwctpUTVmREZXpHr9tr/iKrQG92Q+0d2lOJopJC+JL4MWDDl6ZC7SYxGU/E0
qQi9phACmU47NE4z6A3tk9poF5IeKtRd1JOJ+BeXAoS7Gxfs6q4sanrSn26YgagI6BXA7Xp9120fDowM
N1iKJOi1pHj1rgWGg+GQX4fIeWDlTIoMbrRqXL3OYKmDn+9ET7PyqyY+BTUo0EOR2trRrSQLAmAk3lh8
x2Qp5k3ftnqeRXUHxgzzoUo7qLAMsSWYqD2sfOpr87GgWm7zU55nNxlsPb+Jr6wEDTHe9QNfuZidHvzR
MIti41DGpCNq/o7ym1A2peRyPBja5jTtFrM5ZjXMF2hXigZKWVXC2/h/71r+pu7c9RQsQNXMtcQmkqpW
MsCKolzni+95xeiM14AHuz9OMGVxAJRHPmKVMaFVYqxLm3v3BsYUm9FXC6Xdxi3Bp742QJ1+4ce5Hv0o
qFQ554QMnB5AJKVZ0u4ngNaLydfayuSuu/5MNDXPXbwXLQ5o6XaUWhxExc7pVKTQKTvgPzSgpZ0ZBCaq
bhw9lE0PfLLQoZq/l+HuPxOBtwqnQZUv2BrHQX+HXByUmScEZstt/cBsWDwI2pW0lk/pHx8VbsVFE6r4
wSfpLBGrESdHWWJoke+EB2xv64ZoGLw90u2fYXS/He1VslC4cZzYtL4V0LsOYlaKAlr/EDn50ukfCm7o
m0MGVfgLAwu0KRbZ7NInxc9N0MCgg1Jdy9NMYn7irF+lMX1KpTbxVQCzbJoTeLCYuMxwOnG2SYrdMM31
BKq3lVQu7ReDz1WmbCvEPzTqMiXL4U2IRWc+FcijCd8oVUswUUptI3cwt8LJiosFIsZ6JwB/ucOd4xyQ
iZS0dpbEAPaXoGwnO5Q89ZSaaXQGKyWG0M/s7MT6tfdxd8+eEea0FpubJ57RHE88PC1cje+WRQ9xp+vH
f0ATIlJ+KQC0wZ9/+664swTTMBvHAEGJNofhagulJwOhBAfeJwZqfBy8x+gzd2oJvafCwqpbkiy7pDH7
nu5DjCc344BEi6OX0++y9r0YvMSsN07fFgmlFQkiPnCisN+z3IK162LTWT88fvgS655/UBaQYQiyioef
wbaU70zhmi9hKNzIV6I7IPdwiq2r/7wkYtNG0kTu8TTORGJBDgPzxiiPIqcSN/yXXCx/2DsV8/eyLNG6
vMwyeIQBDoT6QvSRtaZ0E7/XLwDPEqsOdSKwBCBAnYD7J/kzW/i7yQatGFC3khHF3Nq+DaIbN9HS9y2Q
9bTbf4hiC/ZVUPO7Iq3Wz3V3Z6I8++xjIw5MAXq5aeo0IWHJsF01+oaWbEOPOP77EhtqxZ3DCEQgMr24
dRH36SjjM40U4t9OfCew9uzYvtPXagSgO2jma7AVF9LKTgryHvALJl+r+TVlPUFTMnRlxBM4y2B/A1FP
SvitjEGcEadH2KM+73nnV1z7VZyh0c5Rai5vyKArpSlm7eEljhSC1MTAY7TSfw7IWwGbCrtTwOe8zIxh
dKPEdBI9H3n8bjho4TODpxRpQgG3ZKOjAdDfpnX/nQLyphhk33rvxZ45P7NQVblwYrfZWsh7i9hu4uto
hITcxgtZnXUbfN9DWOOf7wGnj//WG9Mf77PiflVZFh82+rpaMajyoSyOBoncGjEbRateg+HXV1qSXqwA
U3T6R1pqWINetKu6L35F4EqDIY7Wag+SMbPg+04OaZHoz2EFS5r1rfAa6cYblZuU5FWAJB37/+EO7NxV
aS38/YsZKzcQjcECWZWpDlCXNz+gLtMSTVqyrt4h2TXY6HRND+BwySbCmchKG6r26auXaAQGmqdYscJ2
SARppiVdGdiVqILPA1VUJYziR77PEzTgbrbvpehcP2Hi8NwbikfVn6BEyiim9mJnSEi/ZcEGv9bChZcE
t02Kyo6D96EgmoNqaZ6C7sAu2ki9hxEQ5L6UvEDjOS8GzAiUJx2cBYWHUXlUYi0VW15z47Icc8W6Voo5
cWEvBW8g1IKUAE6Q5Jtjrmm4ihXG6ARL/3HUj0rmtn+B+CIzlN8EZsBYc622YcaA6pK4tY7waTosHbbJ
9v8VkJCYJSeM2j8YPLpl0Kr3lLiqEdiN6Av7FHDGiRdTPjsX0I+Kj/1h0H9CuYj7wDt2n0MyO0s0C00c
N2adq9rEvukcUyGn8Za/SyFnojnDh9O3qr73WfWFy6Ma+Fob4guXytX0zkgZEJfVcC3bF4vDY+hKMkta
c9sTz+FJaRR+YQwWpeCyo8h/Gw7NjLM09eSCkalzQtffuiQo79x5KvRM0Uhjh4Cj3W6an19u0oHQDGgG
v7sKPv2OW8z/HL/TDvNZfnihS5qKevmRJzcGSC/DmINMNkn451jBrt8UYbfhO7Aq+BPS49+dwPdcG5XY
dPp2hzs3/6OWY9o8l9PrpS5ByiRYuVWs2UJ455YYCQrnFr+MFeeqlS0pqCggYJVwD0uljeJmn94CEaA7
MJZAiWUP/uxCVZRlixVIv1mvX5Fp6T/lbRYXPR3+E9gz2V9/2vAOgFvykaOqRt8pBF0mt4xIMp+8bvbb
53JAFDtI7DmOcPffl+RC/SRN3V9uugdZ38zNCGF68S7oCQAARgMAAA4AAAAaAwBf6Hw2L3HCoPL9mM+6
oX4yFwLIj0MIZjy9h0b3RUk0t6LJ4HTZNTmWjYXVBjgPPErmax5QywhGr0I8MfQdpIWmJM40mOneThv7
3Rs4ZSABD4OZJT7kg9JaMfcA2GqC74N3X6TaYVnHGvv1u3bFtzgp/ffupZaelETTBxS4dRT6oGD0isid
Ny7FhNEPEn4MmTg6BaRhaMDnUgwNXGAIv1HhFh2N6qCpalS9NevBaIeiDxr3ayUkzryLkUHlxLWq+x3I
DTEDTGMJ1ky0Du8gZgUz8NBanOKSFX2Wfv9tolnScocuaJZ3BvjO1n48/vHdXVJjfuMK/znFg3gbYcPv
ECCpcu1k3eTKkCKV/NYVIQFTo4xIW4EXfVIgTEMJXGZhtlOMGb4H0eoKJ0GbedbWoMU9M3e3FP/cYD0c
bFRqFKM8+f07qE0Aa8rXCyKSxMkx8V/y8UU8kupH2bxbznO/g6JnQIj1JWK3QOwwEiabBKG2yryhpn15
QuaBNT27vvBt1vfihMpR59DyiKhEnU0pYZ1+zh9YbL56lMB0sVKs7Q7wtLk/A+TfUG4B0fg/A143HRHl
pMDRhQ7WzdszUtS5ufVIMDJphxbhyMsWLo3TYtuTBTocUqYyObjLVMCBche9xnxukZvtBcoJSNn5ouQM
lViE9FeuMUFEUFfyb2oVosathtSHXtHNsbpaRD7yCNGDT6j1CRcx9pnzqq+fus8xiaxhkTgdRUIXtOLW
1GtaVFCt8nnVbw+tIX2sHiVpZ6HHGc+TdRNojlkiUCim11ZntyHyC0WwQFlqoeY7qePcI6cQti4doFNU
gw2hJKiOaNQtRYxr7YTRCGAMYd8j6qpQbO7yKtccZA0y38ZYUl27S0nY808ka0oHwKzQ76sJBjwvtPQQ
/EIBEv4l/Mts3yEoRPef/9Q4Mi+RuMdnh1C1MwRlOiGLbMP/bbSixwnEO4rZyLH0KXgliHP+kib6PtrX
rhYrxELWfmcv1thwMxvFa91Gc3L8hewSVtRpkdLd/50xOnHRhNorqa+BU6MZ8eFg/HMXUM5kx2SDgOz9
JmrvEhP46Rick+iSb54dwGBqiO4Cut9LqWPNH3yhGj4URre8DDkzokcAYAUAAAABAAAOAAAAGgMAAGp+
1iE4LDZYN2cfsDihrVzWeKpQhDmt4kczAeMarbtHLKyakei4xxenEohHhI9sT5lQeozIAI1S2yGY+tLT
AsS9Fz4iz6jTqDOtFcJN+A96nymNV/Yrwwx+I1/v0muzx/Hbryc34r2a63wk8OvVTXp58oBUS6fFW4pq
xJryGaMq7W1sModQO6HXAX7d96OAB6NE5afBrj4mLxHxpJHlcoRNU2PEOE158a1tzTe+rk/zrVfEkTkh
SgDvZpDTDTsmiRG1lGnigAZJ2cOmpa9jS+0l1xFSLaoKk/d9eQAWa2BnaCX3gmiNKObvpIjaaxXKxxHa
3xpYKpesO2qThQAAAAEAADxMAABQUujtCwAAVVNRUkgB/lZBgPgOD4VnCgAAVUiJ5USLCUmJ0EiJ8kiN
dwJWigf/yojBJAfA6QNIx8MA/f//SNPjiMFIjZxciPH//0iD48BqAEg53HX5U0iNewiKTv//yohHAojI
wOkEiE8BJA+IB0iNT/xQQVdIjUcERTH/QVZBvgEAAABBVUUx7UFUVVNIiUwk8EiJRCTYuAEAAABIiXQk
+EyJRCToicNEiUwk5A+2TwLT44nZSItcJDj/yYlMJNQPtk8B0+BIi0wk8P/IiUQk0A+2B8cBAAAAAMdE
JMgAAAAAx0QkxAEAAADHRCTAAQAAAMdEJLwBAAAAxwMAAAAAiUQkzA+2TwEBwbgAAwAA0+AxyY24NgcA
AEE5/3MTSItcJNiJyP/BOflmxwRDAATr60iLfCT4idBFMdJBg8v/MdJJifxJAcRMOecPhO8IAAAPtgdB
weII/8JI/8dBCcKD+gR+40Q7fCTkD4PaCAAAi0Qk1EhjXCTISItUJNhEIfiJRCS4SGNsJLhIidhIweAE
SAHoQYH7////AEyNDEJ3Gkw55w+ElggAAA+2B0HB4ghBweMISP/HQQnCQQ+3EUSJ2MHoCw+3yg+vwUE5
wg+DxQEAAEGJw7gACAAASItcJNgpyA+2TCTMvgEAAADB+AWNBAJBD7bVZkGJAYtEJNBEIfjT4LkIAAAA
K0wkzNP6AdBpwAADAACDfCTIBonATI2MQ2wOAAAPjrgAAABIi1Qk6ESJ+EQp8A+2LAIB7Uhj1onrgeMA
AQAAQYH7////AEhjw0mNBEFMjQRQdxpMOecPhNsHAAAPtgdBweIIQcHjCEj/x0EJwkEPt5AAAgAARInY
wegLD7fKD6/BQTnCcyBBicO4AAgAAAH2KcjB+AWF240EAmZBiYAAAgAAdCHrLUEpw0EpwonQZsHoBY10
NgFmKcKF22ZBiZAAAgAAdA6B/v8AAAAPjmH////reIH+/wAAAH9wSGPGQYH7////AE2NBEF3Gkw55w+E
QwcAAA+2B0HB4ghBweMISP/HQQnCQQ+3EESJ2MHoCw+3yg+vwUE5wnMYQYnDuAAIAAAB9inIwfgFjQQC
ZkGJAOuhQSnDQSnCidBmwegFjXQ2AWYpwmZBiRDriEiLTCToRIn4Qf/HQYn1QIg0AYN8JMgDfw3HRCTI
AAAAAOmmBgAAi1QkyItEJMiD6gOD6AaDfCTICQ9P0IlUJMjphwYAAEEpw0EpwonQZsHoBWYpwkiLRCTY
QYH7////AGZBiRFIjTRYdxpMOecPhHkGAAAPtgdBweIIQcHjCEj/x0EJwg+3loABAABEidjB6AsPt8oP
r8FBOcJzTkGJw7gACAAATItMJNgpyItMJMREiXQkxMH4BY0EAotUJMCJTCTAZomGgAEAADHAg3wkyAaJ
VCS8D5/ASYHBZAYAAI0EQIlEJMjpVAIAAEEpw0EpwonQZsHoBWYpwkGB+////wBmiZaAAQAAdxpMOecP
hNoFAAAPtgdBweIIQcHjCEj/x0EJwg+3lpgBAABEidjB6AsPt8oPr8FBOcIPg9AAAABBuAAIAABBicNI
weMFRInAKcjB+AWNBAJmiYaYAQAASItEJNhIAdhBgfv///8ASI00aHcaTDnnD4RwBQAAD7YHQcHiCEHB
4whI/8dBCcIPt5bgAQAARInYwegLD7fKD6/BQTnCc09BKchBicNBwfgFRYX/Qo0EAmaJhuABAAAPhCkF
AAAxwIN8JMgGSItcJOgPn8CNRAAJiUQkyESJ+EQp8EQPtiwDRIn4Qf/HRIgsA+nYBAAAQSnDQSnCidBm
wegFZinCZomW4AEAAOkRAQAAQSnDQSnCidBmwegFZinCQYH7////AGaJlpgBAAB3Gkw55w+EtQQAAA+2
B0HB4ghBweMISP/HQQnCD7eWsAEAAESJ2MHoCw+3yg+vwUE5wnMgQYnDuAAIAAApyMH4BY0EAmaJhrAB
AACLRCTE6ZgAAABBKcNBKcKJ0GbB6AVmKcJBgfv///8AZomWsAEAAHcaTDnnD4REBAAAD7YHQcHiCEHB
4whI/8dBCcIPt5bIAQAARInYwegLD7fKD6/BQTnCcx1BicO4AAgAACnIwfgFjQQCZomGyAEAAItEJMDr
IkEpw0EpwonQZsHoBWYpwotEJLxmiZbIAQAAi1QkwIlUJLyLTCTEiUwkwESJdCTEQYnGMcCDfCTIBkyL
TCTYD5/ASYHBaAoAAI1EQAiJRCTIQYH7////AHcaTDnnD4ScAwAAD7YHQcHiCEHB4whI/8dBCcJBD7cR
RInYwegLD7fKD6/BQTnCcydBicO4AAgAAEUx7SnIwfgFjQQCZkGJAUhjRCS4SMHgBE2NRAEE63hBKcNB
KcKJ0GbB6AVmKcJBgfv///8AZkGJEXcaTDnnD4QqAwAAD7YHQcHiCEHB4whI/8dBCcJBD7dRAkSJ2MHo
Cw+3yg+vwUE5wnM0QYnDuAAIAABBvQgAAAApyMH4BY0EAmZBiUECSGNEJLhIweAETY2EAQQBAABBuQMA
AADrJ0Epw0EpwonQZsHoBU2NgQQCAABBvRAAAABmKcJmQYlRAkG5CAAAAESJy70BAAAASGPFQYH7////
AEmNNEB3Gkw55w+EhwIAAA+2B0HB4ghBweMISP/HQQnCD7cORInYwegLD7fRD6/CQTnCcxdBicO4AAgA
AAHtKdDB+AWNBAFmiQbrFkEpw0EpwonIZsHoBY1sLQFmKcFmiQ7/y3WRuAEAAABEicnT4CnFRAHtg3wk
yAMPj8IBAACDRCTIB7gDAAAAg/0ED0zFSItcJNhBuAEAAABImEjB4AdMjYwDYAMAALsGAAAASWPAQYH7
////AEmNNEF3Gkw55w+E0AEAAA+2B0HB4ghBweMISP/HQQnCD7cWRInYwegLD7fKD6/BQTnCcxhBicO4
AAgAAEUBwCnIwfgFjQQCZokG6xdBKcNBKcKJ0GbB6AVHjUQAAWYpwmaJFv/LdY9Bg+hAQYP4A0WJxg+O
DQEAAEGD5gFEicDR+EGDzgJBg/gNjXD/fyOJ8UiLXCTYSWPAQdPmSAHARInySI0UU0gpwkyNil4FAADr
UY1w+0GB+////wB3Gkw55w+EGQEAAA+2B0HB4ghBweMISP/HQQnCQdHrRQH2RTnacgdFKdpBg84B/851
x0yLTCTYQcHmBL4EAAAASYHBRAYAAEG9AQAAALsBAAAASGPDQYH7////AE2NBEF3Gkw55w+EuQAAAA+2
B0HB4ghBweMISP/HQQnCQQ+3EESJ2MHoCw+3yg+vwUE5wnMYQYnDuAAIAAAB2ynIwfgFjQQCZkGJAOsa
QSnDQSnCidBmwegFjVwbAUUJ7mYpwmZBiRBFAe3/znWIQf/GdECDxQJFOf53TUiLVCToRIn4RCnwRA+2
LAJEifhB/8f/zUSILAIPlcIxwEQ7fCTkD5LAhcJ100Q7fCTkD4JF9///QYH7////AHcWTDnnuAEAAAB0
I+sHuAEAAADrGkj/x4n4K0Qk+EiLTCTwSItcJDiJAUSJOzHAW11BXEFdQV5BX0iLdfhIi30Qi0sESAHO
ixNIAdfJ6wJXXllIifBIKchaSCnXWYk5W13DaB4AAABa6MUAAABQUk9UX0VYRUN8UFJPVF9XUklURSBm
YWlsZWQuCgAKACRJbmZvOiBUaGlzIGZpbGUgaXMgcGFja2VkIHdpdGggdGhlIFVQWCBleGVjdXRhYmxl
IHBhY2tlciBodHRwOi8vdXB4LnNmLm5ldCAkCgAkSWQ6IFVQWCA0LjAyIENvcHlyaWdodCAoQykgMTk5
Ni0yMDIzIHRoZSBVUFggVGVhbS4gQWxsIFJpZ2h0cyBSZXNlcnZlZC4gJAoAkJCQag5aV17rAV5qAl9q
AVgPBWp/X2o8WA8FXyn2agJYDwWFwHjcUEiNtw8AAACtg+D+QYnGVluLFkiNjfX///9EizlMKflFKfdJ
Ac5fUlBXUU0pyUGDyP9qIkFaUl5qA1op/2oJWA8FSIlEJBBQWlNerVBIieFJidWtUK1BkEiJ917/1VlI
i3QkGEiLfCQQagVaagpYDwVB/+Vd6Hr///8vcHJvYy9zZWxmL2V4ZQAAAQAA7wsAAM4HAAAOSQQAGgMA
dBJ8Ggg2Ct9V9xgLKdkVSgc8lNrznlW1S45V2wl+X5UE/Md+tlQh0J2Q78Q0UpLEkvMkEVOMvrWYHeWK
wfCWH8VCvgC1J42rmOBud3GA7U8RabBaL9g6qcTHce3S8gKIFvfSA/cKOO+HXIuNUdCDmrOa8ymHgcDo
Y340fNMBlzyOpUahlOIUj3wqfUmOmu0vq47s0wfaO5P0RssjvGN4xBPwg7YYM5aJICKBEs+R93MkFN6K
Kj6VTMAsaSz4iVWXIu4K7rTy7/Wp7aArygughxW4PhrKLtAeCykomF+nXLyw9jIiwGuT7gfvLDfIxJ91
u/oQDEtq2B2Jg2GXeJRyiyj1uhTWkU58jq6F3M7XLUwNobzhFMZ2odgA0cu00VTvaIdI9tLd62JQVDv+
bEq/vBnLuDPrSzAYp4T7MQGqS5VBulBhryaxzRo3OU5npumW9RrgqWXV0NudUk/AsMGz59quhLszskP+
uQKQ9usm/Dybh5NBaRpmBK/whjPXuPeasCqosawPQMl3O/rl8wvSDQbbbJ1QE4lOesdTtKiSjceNpXMM
0cRwi4wzUUkJYEGz+FdM1lNFH/ddg8T5Ntt8qJa865ElSoT8BG0dd458cE1irdpSiKZmploA22mw245a
GY5uyWZ4rpZz9T9Pf0F3GosTDWiOFewCXnj+E83GqhKw7k7sP3IGYiyGGCb0cY8UPZCR///kvVH/+1+i
/sHIJejQHJtQ/hvfxW75xK+QIsjghCJPWJQM73F0SipRjCydGR8G2HCjXKQoc+9Z8bIIecaVO4YpijXy
3DrwYudwDktgQbRfds+sZf9Djx9ThozAFWrYn+ZmED9pwWChkQbKsT++Cv8vdij6iguajUzjRCv5y4hG
uPhTYsc2S3MSmkOGpyfu1a9XwLY/ZHiAm8fFbUR6MfdKXwA/8sAU1mmPhE04OGxSsHLDV77RgxvSDue+
rnrux8Zv6C67+nPck9oYYFh+fMhVrxD4r1wt+KAIB6M8GJVMVKmw+p3DzIOdyMffmqIBB85egNwWV6ok
zn7wfWb2MyvNMOjQ6zm5JYZQ7SFihQeOmTmuYXLep1Y4ootMzk5cdaGeVbKqVdFTkodVQ6cWElGzfIwM
4rHT9FvYnjpRX+SXPO9v5qJ4trr97K0cb4/GKdak6xt1TJWgtbchLe9hwTIkleznYFed0xE8sWIvLhVu
Yzlh3Pmf8pKGXxHpjBD7nItCfJtXEU44JigeMtfOKMuabQ0JXGnw7+jb3EIsYglZNgyLI5Dnq/49+oVP
rbYKxnIjKWXnxEwehTGRF+4+WV/lq1G81IJFZ9WUrK1maDJxF4YHWvbFN7z8METGgMITIbw6HYCSsjdD
FrKX8StYFrnB+F4sBbzkJj39nU6ELR5FQLIq+oGCY7XtqZuiYmPttuNz33+EbrVJxVFf9DAF8aEt2ID6
JXw5pzZb+YdkVl//Fk8t389P2h/inlKntamGTwaZ87fEi7+oJMmLxZsBSOtiztMxUGioSbuKcoxwm5w0
glzyCS1q4yDMazPcbfhNZYiOAlBXIc782gsmBXEW+7FldrN3Aay/+HhGqMKWlxVrJ+/S3Z/jmU0XC7Pu
O3Pl0nXGihButJ9RHZxVLZIbAYloM42FJGy6JCzHgAiU7+91p505cKnuZCiASNpgMuFBZ/LBuRL0iz2K
yc3znZFuUcq1XvxEdJKHvPuxMwrlVMasLJet50rdt3EJCvc02OMWUaITg6Ft+oBs6o9Z+Nzryr8ILu7U
fUUm74lcKhcHZfLrf95IF0wGtS/NuBXmoiUgvcdKT+O9xcF1qpLCWWGZ9/xNvzQMpTYYYN6HpuoABn9k
BjLdrzca2NvHt7cMXc6eKc9C4Z63VrKb79vxvDAKhyT1AmGLTNLpvVLV3yxO0cgGl/DnIteJhZ2s37Ko
ReDkoXQl/kT6EiXpj7N2Zf6ueJOpiuQGGPH6+8EK9lYA7hTXW/mw96pMXS5Ukcl7i0bddV1a2wAtxgQU
48UsbUg7oSgCQDxsmpt8Ke6WJCi+14qpfPMGd6h74A/msBUzct7bWqlgLRgGBK/7N7tI/KmpKfUZbjLF
Ai3C5GT6X8sBzI2C3YG0K72Cg4syBi80tB1qCVxhvumU8kSAN5CuNty70VhezdDnRwZlMug5emzmKJ/A
Q76G/W9ipGhW7azivTBOQfpmNF42IXAkagjH0yX7a1TArVr7eYhFUe3ZHI68WnBg25k4mQ0xDsewi/pN
FJngxe42e3rX2OtZ6kb9d3nhATthnxOJhaWTnsXjTJQmPMm5tiLRkEk7wyVuwP282WGG7Q0gdlrpA8td
B0qZ/7wm0dQkdT6HR6sAL3P3+tGrS4vpVA0/EqzpsqlpKGlFB3vGIOT15WfQK+CnVyf9yvPeqJMh3Fix
4Nm3izs06j5pJNxh6ZvCKcroz6AyDTExBCG+S5E9NqXJvd1CDNcDNwcpmuR7YxW8YlTqHG293EceWZlu
uET3L4qFcIUSAUHixGJZJbOY7t1mFa2gnPwGPMo51tubcLmdy70wop1+SHs3zxYg321mUUTJHgctLnMT
ViwYxxgOfQVaZCflcEf6stOdezftGM32l6+bHPF729YFFwTLkImZJAT11T/0JDZIImCpSfySo3al8rPj
xrChwrjLELIgNe6nCcVjABAOAAAcAAAADgAAABoDAABv/f//o7f/Rz5IFXI5YVG4kijma1mNkADqAwAA
DgAAAA4AAAAaAwAAb/3//6O3XSduANgAAAAJAAAADgAAABoDAABviEHYANAIAAABAgAADgAAABoDACOQ
7HQgFTs34gg2Rv83Mg7hHhkJdcrKX1Adze79eb6wXGmxn2jnXiE2D1MkDTW7KPHYBkuDGatwO9oRoNx8
dFLx+j13RkTD2HHB5wFw/0ZkuKunUNOGxn2Tzuboa3fydNBhWwh2EeIThtzyorxSgOgX/mdotvYqHBFb
ROnPJj92yrwQ9ouY+0pMcU4+ovAug/raL8TwRBQLOPWe/qDg2tP2+/MiprOkbF713cUfkx0fZuJlfTkU
frlbT7QGwTH/4shLmzXGjII9ZN5L77Yknvd1ccIj418rVcxCABWPya1vLhSYDf9EZQgj+VP/4eXL1lce
95+BFvpClm6cIdyPR2n5L+YX9mk1llclra0/+7mWi+8Ei0Fv6zg0WIy/5gKkg8+Qsj44OnUioupuFdGm
0hNGL8/5rtNpxDS+hH+uHNTQvvFVR4qgZuiEmNmRdh3y/oYa8GIlZKZm9OvxB4QPIcdi0N6n/aNEODzu
DIgIoEYkJFdZTCCJu3XBr7VhGFmkQtDW0UK1/2P33UI/cTxzazNJaCQGQ8LYhsFF+M1A2R5uoePe4iAs
kcFZcegR0V8lqeqMTzt2/VimwpucDjRv9rHGAy3cn4rXOSqTFnMtRY2uJwlLH5d5XchGHexwOnPr+2vH
fF+iCP0J+hq8v8IS6slsojw5KrcEfYPL/MeA+AAAAABVUFghAAAAAFVQWCEOFg4K45qpLZeakLTQCAAA
AQIAAPDIAABJBAAM9AAAAA==
";
0