結果
問題 | No.2475 Distance Permutation |
ユーザー | beet |
提出日時 | 2023-09-15 20:52:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 4,011 ms / 5,000 ms |
コード長 | 8,421 bytes |
コンパイル時間 | 3,042 ms |
コンパイル使用メモリ | 223,212 KB |
実行使用メモリ | 143,704 KB |
最終ジャッジ日時 | 2024-07-02 22:27:14 |
合計ジャッジ時間 | 115,902 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3,372 ms
143,576 KB |
testcase_01 | AC | 3,367 ms
143,572 KB |
testcase_02 | AC | 3,967 ms
143,656 KB |
testcase_03 | AC | 3,939 ms
143,448 KB |
testcase_04 | AC | 3,930 ms
143,572 KB |
testcase_05 | AC | 3,927 ms
143,572 KB |
testcase_06 | AC | 4,011 ms
143,452 KB |
testcase_07 | AC | 3,968 ms
143,448 KB |
testcase_08 | AC | 3,946 ms
143,444 KB |
testcase_09 | AC | 3,953 ms
143,704 KB |
testcase_10 | AC | 3,947 ms
143,432 KB |
testcase_11 | AC | 3,984 ms
143,576 KB |
testcase_12 | AC | 3,942 ms
143,444 KB |
testcase_13 | AC | 3,700 ms
143,576 KB |
testcase_14 | AC | 3,673 ms
143,444 KB |
testcase_15 | AC | 3,689 ms
143,580 KB |
testcase_16 | AC | 3,665 ms
143,448 KB |
testcase_17 | AC | 3,902 ms
143,576 KB |
testcase_18 | AC | 3,885 ms
143,576 KB |
testcase_19 | AC | 3,889 ms
143,452 KB |
testcase_20 | AC | 3,896 ms
143,452 KB |
testcase_21 | AC | 3,905 ms
143,444 KB |
testcase_22 | AC | 3,887 ms
143,452 KB |
testcase_23 | AC | 3,890 ms
143,452 KB |
testcase_24 | AC | 3,886 ms
143,572 KB |
testcase_25 | AC | 3,889 ms
143,448 KB |
testcase_26 | AC | 3,879 ms
143,448 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using Int = long long; const char newl = '\n'; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} template<typename T> void drop(const T &x){cout<<x<<endl;exit(0);} template<typename T=int> vector<T> read(size_t n){ vector<T> ts(n); for(size_t i=0;i<n;i++) cin>>ts[i]; return ts; } template<typename T, T MOD = 1000000007> struct Mint{ inline static constexpr T mod = MOD; T v; Mint():v(0){} Mint(signed v):v(v){} Mint(long long t){v=t%MOD;if(v<0) v+=MOD;} Mint pow(long long k){ Mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static Mint add_identity(){return Mint(0);} static Mint mul_identity(){return Mint(1);} Mint inv(){return pow(MOD-2);} Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;} Mint& operator/=(Mint a){return (*this)*=a.inv();} Mint operator+(Mint a) const{return Mint(v)+=a;} Mint operator-(Mint a) const{return Mint(v)-=a;} Mint operator*(Mint a) const{return Mint(v)*=a;} Mint operator/(Mint a) const{return Mint(v)/=a;} Mint operator+() const{return *this;} Mint operator-() const{return v?Mint(MOD-v):Mint(v);} bool operator==(const Mint a)const{return v==a.v;} bool operator!=(const Mint a)const{return v!=a.v;} static Mint comb(long long n,int k){ Mint num(1),dom(1); for(int i=0;i<k;i++){ num*=Mint(n-i); dom*=Mint(i+1); } return num/dom; } }; template<typename T, T MOD> ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;} constexpr int bmds(int x){ const int v[] = {1012924417, 924844033, 998244353, 897581057, 645922817}; return v[x]; } constexpr int brts(int x){ const int v[] = {5, 5, 3, 3, 3}; return v[x]; } template<int X> struct NTT{ inline static constexpr int md = bmds(X); inline static constexpr int rt = brts(X); using M = Mint<int, md>; vector< vector<M> > rts,rrts; void ensure_base(int n){ if((int)rts.size()>=n) return; rts.resize(n);rrts.resize(n); for(int i=1;i<n;i<<=1){ if(!rts[i].empty()) continue; M w=M(rt).pow((md-1)/(i<<1)); M rw=w.inv(); rts[i].resize(i);rrts[i].resize(i); rts[i][0]=M(1);rrts[i][0]=M(1); for(int k=1;k<i;k++){ rts[i][k]=rts[i][k-1]*w; rrts[i][k]=rrts[i][k-1]*rw; } } } void ntt(vector<M> &as,bool f){ int n=as.size(); assert((n&(n-1))==0); ensure_base(n); for(int i=0,j=1;j+1<n;j++){ for(int k=n>>1;k>(i^=k);k>>=1); if(i>j) swap(as[i],as[j]); } for(int i=1;i<n;i<<=1){ for(int j=0;j<n;j+=i*2){ for(int k=0;k<i;k++){ M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]); as[i+j+k]=as[j+k]-z; as[j+k]+=z; } } } if(f){ M tmp=M(n).inv(); for(int i=0;i<n;i++) as[i]*=tmp; } } vector<M> multiply(vector<M> as,vector<M> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; as.resize(sz,M(0)); bs.resize(sz,M(0)); ntt(as,0);ntt(bs,0); for(int i=0;i<sz;i++) as[i]*=bs[i]; ntt(as,1); as.resize(need); return as; } vector<int> multiply(vector<int> as,vector<int> bs){ vector<M> am(as.size()),bm(bs.size()); for(int i=0;i<(int)am.size();i++) am[i]=M(as[i]); for(int i=0;i<(int)bm.size();i++) bm[i]=M(bs[i]); vector<M> cm=multiply(am,bm); vector<int> cs(cm.size()); for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v; return cs; } }; template<typename M_> class Enumeration{ using M = M_; protected: inline static vector<M> fact,finv,invs; public: static void init(int n){ n=min<decltype(M::mod)>(n,M::mod-1); int m=fact.size(); if(n<m) return; fact.resize(n+1,1); finv.resize(n+1,1); invs.resize(n+1,1); if(m==0) m=1; for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i); finv[n]=M(1)/fact[n]; for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i); for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1]; } static M Fact(int n){ init(n); return fact[n]; } static M Finv(int n){ init(n); return finv[n]; } static M Invs(int n){ init(n); return invs[n]; } static M C(int n,int k){ if(n<k or k<0) return M(0); init(n); return fact[n]*finv[n-k]*finv[k]; } static M P(int n,int k){ if(n<k or k<0) return M(0); init(n); return fact[n]*finv[n-k]; } // put n identical balls into k distinct boxes static M H(int n,int k){ if(n<0 or k<0) return M(0); if(!n and !k) return M(1); init(n+k); return C(n+k-1,n); } }; template<typename M_> struct FormalPowerSeries : Enumeration<M_> { using M = M_; using super = Enumeration<M>; using super::fact; using super::finv; using super::invs; using Poly = vector<M>; using Conv = function<Poly(Poly, Poly)>; Conv conv; FormalPowerSeries(Conv conv):conv(conv){} Poly pre(const Poly &as,int deg){ return Poly(as.begin(),as.begin()+min((int)as.size(),deg)); } Poly add(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]+=bs[i]; return cs; } Poly sub(Poly as,Poly bs){ int sz=max(as.size(),bs.size()); Poly cs(sz,M(0)); for(int i=0;i<(int)as.size();i++) cs[i]+=as[i]; for(int i=0;i<(int)bs.size();i++) cs[i]-=bs[i]; return cs; } Poly mul(Poly as,Poly bs){ return conv(as,bs); } Poly mul(Poly as,M k){ for(auto &a:as) a*=k; return as; } bool is_zero(Poly as){ return as==Poly(as.size(),0); } void shrink(Poly &as){ assert(not is_zero(as)); while(as.back()==M(0)) as.pop_back(); } // F(0) must not be 0 Poly inv(Poly as,int deg); // not zero Poly div(Poly as,Poly bs); // not zero Poly mod(Poly as,Poly bs); // F(0) must be 1 Poly sqrt(Poly as,int deg); Poly diff(Poly as); Poly integral(Poly as); // F(0) must be 1 Poly log(Poly as,int deg); // F(0) must be 0 Poly exp(Poly as,int deg); // not zero Poly pow(Poly as,long long k,int deg); // x <- x + c Poly shift(Poly as,M c); }; template<typename M> vector<M> FormalPowerSeries<M>::exp(Poly as,int deg){ Poly fs({M(1)}); as[0]+=M(1); for(int i=1;i<deg;i<<=1) fs=pre(mul(fs,sub(pre(as,i<<1),log(fs,i<<1))),i<<1); return fs; } template<typename M> vector<M> FormalPowerSeries<M>::log(Poly as,int deg){ return pre(integral(mul(diff(as),inv(as,deg))),deg); } template<typename M> vector<M> FormalPowerSeries<M>::inv(Poly as,int deg){ assert(as[0]!=M(0)); Poly rs({M(1)/as[0]}); for(int i=1;i<deg;i<<=1) rs=pre(sub(add(rs,rs),mul(mul(rs,rs),pre(as,i<<1))),i<<1); return rs; } template<typename M> vector<M> FormalPowerSeries<M>::integral(Poly as){ super::init(as.size()+1); int n=as.size(); Poly rs(n+1); rs[0]=M(0); for(int i=0;i<n;i++) rs[i+1]=as[i]*invs[i+1]; return rs; } template<typename M> vector<M> FormalPowerSeries<M>::diff(Poly as){ int n=as.size(); Poly rs(n); for(int i=1;i<n;i++) rs[i-1]=as[i]*M(i); return rs; } namespace fps_998244353{ NTT<2> ntt; using M = decltype(ntt)::M; using E = Enumeration<M>; auto conv=[](auto as,auto bs){return ntt.multiply(as,bs);}; FormalPowerSeries<M> FPS(conv); } //INSERT ABOVE HERE signed main(){ cin.tie(0); ios::sync_with_stdio(0); int k,q; cin>>k>>q; using namespace fps_998244353; E::init(2e6); using Poly = vector<M>; const int MAX = 1e5+10; Poly bs(MAX); for(int j=1;j<=k;j++) bs[j]=E::Invs(j); bs=FPS.exp(bs,MAX); bs.resize(MAX); const int B = 1000; // dat[t][n] -> [0,t*B) * [0,MAX) array<Poly,(MAX/B+1)> dat; for(int t=0;t<(int)dat.size();t++){ Poly ts(bs); ts.resize(t*B); dat[t]=ntt.multiply(ts,bs); } // [0, s) auto query=[&](int n,int s)->M{ M ans{0}; if(s/B) ans+=dat[s/B][n-1]; for(int idx=s/B*B;idx<s;idx++) ans+=bs[idx]*bs[n-1-idx]; return ans*E::Fact(n-1); }; for(int i=0;i<q;i++){ int n,l,r; cin>>n>>l>>r; l--; cout<<query(n,r)-query(n,l)<<newl; } return 0; }