結果

問題 No.1302 Random Tree Score
ユーザー ecottea
提出日時 2023-09-16 01:29:06
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 540 ms / 3,000 ms
コード長 13,823 bytes
コンパイル時間 5,046 ms
コンパイル使用メモリ 267,640 KB
最終ジャッジ日時 2025-02-16 22:54:54
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
string mint_to_frac(mint x, int v_max = 31595) {
repi(dnm, 1, v_max) {
int num = (x * dnm).val();
if (num == 0) {
return "0";
}
if (num <= v_max) {
if (dnm == 1) return to_string(num);
return to_string(num) + "/" + to_string(dnm);
}
if (mint::mod() - num <= v_max) {
if (dnm == 1) return "-" + to_string(mint::mod() - num);
return "-" + to_string(mint::mod() - num) + "/" + to_string(dnm);
}
}
return to_string(x.val());
}
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
#ifdef _MSC_VER
inline ostream& operator<<(ostream& os, const mint& x) { os << mint_to_frac(x); return os; }
#else
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
#endif
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
inline int msb(__int128 n) { return (n >> 64) != 0 ? (127 - __builtin_clzll((ll)(n >> 64))) : n != 0 ? (63 - __builtin_clzll((ll)(n))) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//
/*
* Factorial_mint(int N) : O(n)
* N
*
* mint fact(int n) : O(1)
* n!
*
* mint fact_inv(int n) : O(1)
* 1/n! n 0
*
* mint inv(int n) : O(1)
* 1/n
*
* mint perm(int n, int r) : O(1)
* nPr
*
* mint bin(int n, int r) : O(1)
* nCr
*
* mint mul(vi rs) : O(|rs|)
* nC[rs] n = Σrs
*/
class Factorial_mint {
int n_max;
//
vm fac, fac_inv;
public:
// n! O(n)
Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
fac[0] = 1;
repi(i, 1, n) fac[i] = fac[i - 1] * i;
fac_inv[n] = fac[n].inv();
repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
}
Factorial_mint() : n_max(0) {} //
// n!
mint fact(int n) const {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
Assert(0 <= n && n <= n_max);
return fac[n];
}
// 1/n! n 0
mint fact_inv(int n) const {
// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h
Assert(n <= n_max);
if (n < 0) return 0;
return fac_inv[n];
}
// 1/n
mint inv(int n) const {
// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d
Assert(0 < n && n <= n_max);
return fac[n - 1] * fac_inv[n];
}
// nPr
mint perm(int n, int r) const {
// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[n - r];
}
// nCr
mint bin(int n, int r) const {
// verify : https://atcoder.jp/contests/abc034/tasks/abc034_c
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[r] * fac_inv[n - r];
}
// nC[rs]
mint mul(const vi& rs) const {
// verify : https://yukicoder.me/problems/no/2141
if (*min_element(all(rs)) < 0) return 0;
int n = accumulate(all(rs), 0);
Assert(n <= n_max);
mint res = fac[n];
repe(r, rs) res *= fac_inv[r];
return res;
}
};
//mod 998244353
/*
* Online_convolution(int n) : O(n)
* a[0..n) b[0..n) c[0..n)
*
* void set(mint a, mint b) : O((log n)^2)
* t a=a[t], b=b[t]
*
* mint [](int i) : O(1)
* c[i] = Σj∈[0..i] a[j] b[i-j]
* : a[0..i], b[0..i]
*
* mint back() : O(1)
* c[i]
*
* void update(int i, mint c) : O(1)
* c[i] c
*/
class Online_convolution {
// : https://qiita.com/Kiri8128/items/1738d5403764a0e26b4c
int n, t; // t :
vm as, bs, cs;
public:
// n
Online_convolution(int n) : n(n), t(0), as(n), bs(n), cs(n) {
// verify : https://atcoder.jp/contests/abc280/tasks/abc280_e
}
Online_convolution() : n(0), t(0) {}
// t a=a[t], b=b[t]
void set(mint a, mint b) {
// verify : https://atcoder.jp/contests/abc280/tasks/abc280_e
as[t] = a; bs[t] = b;
int i1_max = lsb(t + 2), i2_max = i1_max;
//
if (popcount(t + 2) == 1) { i1_max -= 2; i2_max -= 1; }
// 2^i :
repi(i, 0, i1_max) {
// cs_sub[0..j_max]
int j_max = min((1 << (i + 1)) - 2, n - 1 - t);
// len :
int len = min(1 << i, j_max + 1);
// as[x_min..x_min+len) bs[y_min..y_min+len)
int x_min = t + 1 - (1 << i);
int y_min = (1 << i) - 1;
vm as_sub, bs_sub;
copy(as.begin() + x_min, as.begin() + (x_min + len), back_inserter(as_sub));
copy(bs.begin() + y_min, bs.begin() + (y_min + len), back_inserter(bs_sub));
vm cs_sub = convolution(as_sub, bs_sub);
repi(j, 0, j_max) cs[t + j] += cs_sub[j];
}
// 2^i :
repi(i, 0, i2_max) {
// cs_sub[0..j_max]
int j_max = min((1 << (i + 1)) - 2, n - 1 - t);
// len :
int len = min(1 << i, j_max + 1);
// as[x_min..x_min+len) bs[y_min..y_min+len)
int x_min = (1 << i) - 1;
int y_min = t + 1 - (1 << i);
vm as_sub, bs_sub;
copy(as.begin() + x_min, as.begin() + (x_min + len), back_inserter(as_sub));
copy(bs.begin() + y_min, bs.begin() + (y_min + len), back_inserter(bs_sub));
vm cs_sub = convolution(as_sub, bs_sub);
repi(j, 0, j_max) cs[t + j] += cs_sub[j];
}
t++;
}
// c[i]
mint const& operator[](int i) const {
// verify : https://atcoder.jp/contests/abc280/tasks/abc280_e
Assert(i < t);
return cs[i];
}
// c[i]
mint back() const {
// verify : https://judge.yosupo.jp/problem/log_of_formal_power_series
return cs[t - 1];
}
// c[i] c
void update(int i, mint c) {
cs[i] = c;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Online_convolution& c) {
os << "a: " << c.as << endl;
os << "b: " << c.bs << endl;
os << "c: " << c.cs;
return os;
}
#endif
};
//mod 998244353
/*
* Online_exp(int n, Factorial_mint* fm) : O(n)
* exp(f(z)) [z^n]
* : fm n!
*
* void set(mint a) : O((log n)^2)
* t a = [z^t]f(z)
* : 0 a = 0
*
* mint [](int i) : O(1)
* [z^i] exp(f(z))
* : [z^[0..i]] f(z)
*
* mint back() : O(1)
* exp(f(z))
*
* mod 998244353
*/
class Online_exp {
int t; // t :
vm as, bs;
Online_convolution OC;
Factorial_mint* fm;
public:
// exp(f(z)) [z^n]
Online_exp(int n, Factorial_mint* fm) : t(0), as(n + 1), bs(n + 1), OC(n), fm(fm) {
// verify : https://judge.yosupo.jp/problem/exp_of_formal_power_series
bs[0] = 1;
}
Online_exp() : t(0) {}
// t a = [z^t]f(z)
void set(mint a) {
// verify : https://judge.yosupo.jp/problem/exp_of_formal_power_series
if (t == 0) {
Assert(a == 0);
t++;
return;
}
OC.set(t * a, bs[t - 1]);
as[t] = a;
bs[t] = OC.back() * fm->inv(t);
t++;
}
// [z^i] exp(f(z))
mint const& operator[](int i) const {
Assert(i < t);
return bs[i];
}
// exp(f(z))
mint back() const {
// verify : https://judge.yosupo.jp/problem/exp_of_formal_power_series
return bs[t - 1];
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Online_exp& OE) {
os << "a: " << OE.as << endl;
os << "b: " << OE.bs;
return os;
}
#endif
};
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n;
cin >> n;
Factorial_mint fm(n);
Online_convolution OC(n);
Online_exp OE(n, &fm);
vm h(n + 1);
h[0] = 0;
rep(i, n) {
OE.set(h[i]);
OC.set(h[i] + (int)(i == 0), OE.back());
h[i + 1] = OC.back();
}
dump(OE);
dump(OC);
dump(h);
dump(h[n], OE[n - 1]);
mint res = h[n] - OE[n - 1]; dump(res);
res *= fm.fact(n); dump(res);
res /= mint(n).pow(n - 1);
cout << res << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0