結果

問題 No.1625 三角形の質問
ユーザー maspymaspy
提出日時 2023-09-16 06:59:07
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 619 ms / 6,000 ms
コード長 19,669 bytes
コンパイル時間 5,725 ms
コンパイル使用メモリ 327,896 KB
実行使用メモリ 109,552 KB
最終ジャッジ日時 2024-07-03 08:33:09
合計ジャッジ時間 15,343 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 20 ms
10,356 KB
testcase_02 AC 184 ms
45,984 KB
testcase_03 AC 121 ms
46,688 KB
testcase_04 AC 118 ms
36,308 KB
testcase_05 AC 265 ms
67,352 KB
testcase_06 AC 575 ms
108,824 KB
testcase_07 AC 599 ms
109,016 KB
testcase_08 AC 619 ms
109,552 KB
testcase_09 AC 583 ms
109,400 KB
testcase_10 AC 617 ms
108,540 KB
testcase_11 AC 603 ms
108,568 KB
testcase_12 AC 608 ms
108,516 KB
testcase_13 AC 599 ms
108,600 KB
testcase_14 AC 582 ms
108,596 KB
testcase_15 AC 605 ms
108,576 KB
testcase_16 AC 122 ms
77,092 KB
testcase_17 AC 221 ms
88,648 KB
testcase_18 AC 84 ms
24,364 KB
testcase_19 AC 258 ms
108,572 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1625"
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T, typename U>
T ceil(T x, U y) {
  return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U>
T floor(T x, U y) {
  return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T, typename U>
pair<T, T> divmod(T x, U y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sum = 0;
  for (auto &&a: A) sum += a;
  return sum;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  assert(!que.empty());
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  assert(!que.empty());
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
// based on yosupo's fastio
#include <unistd.h>

namespace fastio {
#define FASTIO
// クラスが read(), print() を持っているかを判定するメタ関数
struct has_write_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.write(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {
};

struct has_read_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.read(), std::true_type{});

  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};

struct Scanner {
  FILE *fp;
  char line[(1 << 15) + 1];
  size_t st = 0, ed = 0;
  void reread() {
    memmove(line, line + st, ed - st);
    ed -= st;
    st = 0;
    ed += fread(line + ed, 1, (1 << 15) - ed, fp);
    line[ed] = '\0';
  }
  bool succ() {
    while (true) {
      if (st == ed) {
        reread();
        if (st == ed) return false;
      }
      while (st != ed && isspace(line[st])) st++;
      if (st != ed) break;
    }
    if (ed - st <= 50) {
      bool sep = false;
      for (size_t i = st; i < ed; i++) {
        if (isspace(line[i])) {
          sep = true;
          break;
        }
      }
      if (!sep) reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_same<T, string>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    while (true) {
      size_t sz = 0;
      while (st + sz < ed && !isspace(line[st + sz])) sz++;
      ref.append(line + st, sz);
      st += sz;
      if (!sz || st != ed) break;
      reread();
    }
    return true;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  bool read_single(T &ref) {
    if (!succ()) return false;
    bool neg = false;
    if (line[st] == '-') {
      neg = true;
      st++;
    }
    ref = T(0);
    while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }
    if (neg) ref = -ref;
    return true;
  }
  template <typename T,
            typename enable_if<has_read<T>::value>::type * = nullptr>
  inline bool read_single(T &x) {
    x.read();
    return true;
  }
  bool read_single(double &ref) {
    string s;
    if (!read_single(s)) return false;
    ref = std::stod(s);
    return true;
  }
  bool read_single(char &ref) {
    string s;
    if (!read_single(s) || s.size() != 1) return false;
    ref = s[0];
    return true;
  }
  template <class T>
  bool read_single(vector<T> &ref) {
    for (auto &d: ref) {
      if (!read_single(d)) return false;
    }
    return true;
  }
  template <class T, class U>
  bool read_single(pair<T, U> &p) {
    return (read_single(p.first) && read_single(p.second));
  }
  template <size_t N = 0, typename T>
  void read_single_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
      auto &x = std::get<N>(t);
      read_single(x);
      read_single_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool read_single(tuple<T...> &tpl) {
    read_single_tuple(tpl);
    return true;
  }
  void read() {}
  template <class H, class... T>
  void read(H &h, T &... t) {
    bool f = read_single(h);
    assert(f);
    read(t...);
  }
  Scanner(FILE *fp) : fp(fp) {}
};

struct Printer {
  Printer(FILE *_fp) : fp(_fp) {}
  ~Printer() { flush(); }

  static constexpr size_t SIZE = 1 << 15;
  FILE *fp;
  char line[SIZE], small[50];
  size_t pos = 0;
  void flush() {
    fwrite(line, 1, pos, fp);
    pos = 0;
  }
  void write(const char val) {
    if (pos == SIZE) flush();
    line[pos++] = val;
  }
  template <class T, enable_if_t<is_integral<T>::value, int> = 0>
  void write(T val) {
    if (pos > (1 << 15) - 50) flush();
    if (val == 0) {
      write('0');
      return;
    }
    if (val < 0) {
      write('-');
      val = -val; // todo min
    }
    size_t len = 0;
    while (val) {
      small[len++] = char(0x30 | (val % 10));
      val /= 10;
    }
    for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }
    pos += len;
  }
  void write(const string s) {
    for (char c: s) write(c);
  }
  void write(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++) write(s[i]);
  }
  void write(const double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  void write(const long double x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << x;
    string s = oss.str();
    write(s);
  }
  template <typename T,
            typename enable_if<has_write<T>::value>::type * = nullptr>
  inline void write(T x) {
    x.write();
  }
  template <class T>
  void write(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  template <class T, class U>
  void write(const pair<T, U> val) {
    write(val.first);
    write(' ');
    write(val.second);
  }
  template <size_t N = 0, typename T>
  void write_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
      if constexpr (N > 0) { write(' '); }
      const auto x = std::get<N>(t);
      write(x);
      write_tuple<N + 1>(t);
    }
  }
  template <class... T>
  bool write(tuple<T...> tpl) {
    write_tuple(tpl);
    return true;
  }
  template <class T, size_t S>
  void write(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
      if (i) write(' ');
      write(val[i]);
    }
  }
  void write(i128 val) {
    string s;
    bool negative = 0;
    if (val < 0) {
      negative = 1;
      val = -val;
    }
    while (val) {
      s += '0' + int(val % 10);
      val /= 10;
    }
    if (negative) s += "-";
    reverse(all(s));
    if (len(s) == 0) s = "0";
    write(s);
  }
};
Scanner scanner = Scanner(stdin);
Printer printer = Printer(stdout);
void flush() { printer.flush(); }
void print() { printer.write('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  printer.write(head);
  if (sizeof...(Tail)) printer.write(' ');
  print(forward<Tail>(tail)...);
}

void read() {}
template <class Head, class... Tail>
void read(Head &head, Tail &... tail) {
  scanner.read(head);
  read(tail...);
}
} // namespace fastio
using fastio::print;
using fastio::flush;
using fastio::read;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 1 "library/ds/segtree/segtree_2d.hpp"
// 点の重複 OK
template <typename Monoid, typename XY, bool SMALL_X = false>
struct SegTree_2D {
  using MX = Monoid;
  using S = typename MX::value_type;
  static_assert(MX::commute);
  int N;
  // X to idx
  vc<XY> keyX;
  int minX;
  // top node の点列
  vc<XY> all_Y;
  vc<int> pos;
  // segtree data
  int NX, log, size;
  vc<int> indptr;
  vc<S> dat;
  // fractional cascading
  vc<int> to_left;

  SegTree_2D(vc<XY>& X, vc<XY>& Y)
      : SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> {
          return {X[i], Y[i], MX::unit()};
        }) {}

  SegTree_2D(vc<XY>& X, vc<XY>& Y, vc<S>& vals)
      : SegTree_2D(len(X), [&](int i) -> tuple<XY, XY, S> {
          return {X[i], Y[i], vals[i]};
        }) {}

  // f(i) = (x,y,val)
  template <typename F>
  SegTree_2D(int N, F f) {
    vc<XY> X(N), Y(N);
    vc<S> wt(N);
    FOR(i, N) {
      auto [a, b, c] = f(i);
      X[i] = a, Y[i] = b, wt[i] = c;
    }
    if (!SMALL_X) {
      keyX = X;
      UNIQUE(keyX);
      NX = len(keyX);
    } else {
      minX = (X.empty() ? 0 : MIN(X));
      NX = (X.empty() ? 1 : MAX(X) - minX + 1);
    }

    log = 0;
    while ((1 << log) < NX) ++log;
    size = (1 << log);

    vc<int> IX(N);
    FOR(i, N) IX[i] = xtoi(X[i]);
    indptr.assign(2 * size, 0);
    for (auto i: IX) {
      i += size;
      while (i) indptr[i]++, i /= 2;
    }
    indptr = cumsum<int>(indptr);
    dat.assign(2 * indptr.back(), MX::unit());
    to_left.assign(indptr[size], 0);

    vc<int> ptr = indptr;
    vc<int> I = argsort(Y);
    pos.resize(N);
    FOR(i, N) pos[I[i]] = i;
    for (auto raw_idx: I) {
      int i = IX[raw_idx] + size;
      int j = -1;
      while (i) {
        int p = ptr[i];
        ptr[i]++;
        dat[indptr[i + 1] + p] = wt[raw_idx];
        if (j != -1) { to_left[p] = (j % 2 == 0); }
        j = i, i /= 2;
      }
    }
    to_left = cumsum<int>(to_left);

    FOR(i, 2 * size) {
      int off = 2 * indptr[i], n = indptr[i + 1] - indptr[i];
      FOR_R(j, 1, n) {
        dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]);
      }
    }
    all_Y = Y;
    sort(all(all_Y));
  }

  // 最初に与えた点群の index
  void multiply(int raw_idx, S val) {
    int i = 1, p = pos[raw_idx];
    while (1) {
      multiply_i(i, p - indptr[i], val);
      if (i >= size) break;
      int lc = to_left[p] - to_left[indptr[i]];
      int rc = (p - indptr[i]) - lc;
      if (to_left[p + 1] - to_left[p]) {
        p = indptr[2 * i + 0] + lc;
        i = 2 * i + 0;
      } else {
        p = indptr[2 * i + 1] + rc;
        i = 2 * i + 1;
      }
    }
  }

  // 最初に与えた点群の index
  void set(int raw_idx, S val) {
    int i = 1, p = pos[raw_idx];
    while (1) {
      set_i(i, p - indptr[i], val);
      if (i >= size) break;
      int lc = to_left[p] - to_left[indptr[i]];
      int rc = (p - indptr[i]) - lc;
      if (to_left[p + 1] - to_left[p]) {
        p = indptr[2 * i + 0] + lc;
        i = 2 * i + 0;
      } else {
        p = indptr[2 * i + 1] + rc;
        i = 2 * i + 1;
      }
    }
  }

  S prod(XY lx, XY rx, XY ly, XY ry) {
    int L = xtoi(lx), R = xtoi(rx);
    S res = MX::unit();
    auto dfs = [&](auto& dfs, int i, int l, int r, int a, int b) -> void {
      if (a == b || R <= l || r <= L) return;
      if (L <= l && r <= R) {
        res = MX::op(res, prod_i(i, a, b));
        return;
      }
      int la = to_left[indptr[i] + a] - to_left[indptr[i]];
      int ra = a - la;
      int lb = to_left[indptr[i] + b] - to_left[indptr[i]];
      int rb = b - lb;
      int m = (l + r) / 2;
      dfs(dfs, 2 * i + 0, l, m, la, lb);
      dfs(dfs, 2 * i + 1, m, r, ra, rb);
    };
    dfs(dfs, 1, 0, size, LB(all_Y, ly), LB(all_Y, ry));
    return res;
  }

private:
  inline int xtoi(XY x) {
    if constexpr (SMALL_X) return clamp<XY>(x - minX, 0, NX);
    return LB(keyX, x);
  }

  S prod_i(int i, int a, int b) {
    int LID = indptr[i], n = indptr[i + 1] - indptr[i];
    int off = 2 * LID;
    int L = n + a, R = n + b;
    S val = MX::unit();
    while (L < R) {
      if (L & 1) val = MX::op(val, dat[off + (L++)]);
      if (R & 1) val = MX::op(dat[off + (--R)], val);
      L >>= 1, R >>= 1;
    }
    return val;
  }
  void multiply_i(int i, int j, S val) {
    int LID = indptr[i], n = indptr[i + 1] - indptr[i];
    int off = 2 * LID;
    j += n;
    while (j) {
      dat[off + j] = MX::op(dat[off + j], val);
      j >>= 1;
    }
  }
  void set_i(int i, int j, S val) {
    int LID = indptr[i], n = indptr[i + 1] - indptr[i];
    int off = 2 * LID;
    j += n;
    dat[off + j] = val;
    while (j > 1) {
      j /= 2;
      dat[off + j] = MX::op(dat[off + 2 * j + 0], dat[off + 2 * j + 1]);
    }
  }
};
#line 2 "library/alg/monoid/max.hpp"

template <typename E>
struct Monoid_Max {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return max(x, y); }
  static constexpr X unit() { return -infty<E>; }
  static constexpr bool commute = true;
};
#line 6 "main.cpp"

void solve() {
  LL(N, Q);

  using QT = tuple<ll, ll, ll>;
  vc<QT> query;
  FOR(N) {
    LL(a, b, c, d, e, f);
    ll x = min({a, c, e});
    ll y = max({a, c, e});
    ll area = abs((c - a) * (f - b) - (e - a) * (d - b));
    query.eb(x, y, area);
  }
  FOR(Q) {
    LL(t);
    if (t == 1) {
      LL(a, b, c, d, e, f);
      ll x = min({a, c, e});
      ll y = max({a, c, e});
      ll area = abs((c - a) * (f - b) - (e - a) * (d - b));
      query.eb(x, y, area);
    }
    if (t == 2) {
      LL(l, r);
      ++r;
      query.eb(-1, l, r);
    }
  }
  using Mono = Monoid_Max<ll>;
  SegTree_2D<Mono, ll, false> seg(N + Q, [&](int i) -> tuple<ll, ll, ll> {
    auto [a, b, c] = query[i];
    if (i < N) return {a, b, c};
    return {a, b, Mono::unit()};
  });

  FOR(q, N, N + Q) {
    auto&& [a, b, c] = query[q];
    if (a != -1) {
      seg.multiply(q, c);
    } else {
      ll ANS = seg.prod(b, c, b, c);
      if (ANS == Mono::unit()) ANS = -1;
      print(ANS);
    }
  }
}

signed main() {
  solve();
  return 0;
}
0