結果

問題 No.2428 Returning Shuffle
ユーザー 👑 rin204rin204
提出日時 2023-09-18 19:08:45
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 226 ms / 2,000 ms
コード長 21,957 bytes
コンパイル時間 4,021 ms
コンパイル使用メモリ 274,320 KB
実行使用メモリ 14,976 KB
最終ジャッジ日時 2024-07-05 08:56:15
合計ジャッジ時間 7,268 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 114 ms
11,136 KB
testcase_01 AC 225 ms
11,008 KB
testcase_02 AC 226 ms
11,008 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 140 ms
11,136 KB
testcase_20 AC 139 ms
11,136 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 146 ms
14,976 KB
testcase_25 AC 147 ms
14,848 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// start A.cpp
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;

namespace templates {
// type
using ll  = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));

// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on

// const value
const ll MOD1   = 1000000007;
const ll MOD9   = 998244353;
const double PI = acos(-1);

// other macro
#ifndef RIN__LOCAL
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)

// function
vector<char> stoc(string &S) {
    int n = S.size();
    vector<char> ret(n);
    for (int i = 0; i < n; i++) ret[i] = S[i];
    return ret;
}
string ctos(vector<char> &S) {
    int n      = S.size();
    string ret = "";
    for (int i = 0; i < n; i++) ret += S[i];
    return ret;
}

template <class T>
auto min(const T &a) {
    return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
    return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
    return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
    auto b = clamp(a, l, r);
    return (a != b ? a = b, 1 : 0);
}

template <typename T>
T sum(vector<T> &A) {
    T tot = 0;
    for (auto a : A) tot += a;
    return tot;
}

template <typename T>
vector<T> compression(vector<T> X) {
    sort(all(X));
    X.erase(unique(all(X)), X.end());
    return X;
}

// input and output
namespace io {

// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << ' ';
    }
    return os;
}

// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
    is >> A.first >> A.second;
    return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
    os << A.first << ' ' << A.second;
    return os;
}

// vector<pair<S, T>>
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// set<T>
template <typename T>
ostream &operator<<(ostream &os, set<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << ' ';
    }
    return os;
}

// unordered_set<T>
template <typename T>
ostream &operator<<(ostream &os, unordered_set<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << ' ';
    }
    return os;
}

// multiset<T>
template <typename T>
ostream &operator<<(ostream &os, multiset<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << ' ';
    }
    return os;
}

// unordered_multiset<T>
template <typename T>
ostream &operator<<(ostream &os, unordered_multiset<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << endl;
    }
    return os;
}

// map<S, T>
template <typename S, typename T>
ostream &operator<<(ostream &os, map<S, T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << endl;
    }
    return os;
}

// unordered_map<S, T>
template <typename S, typename T>
ostream &operator<<(ostream &os, unordered_map<S, T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << endl;
    }
    return os;
}

// tuple
template <typename T, size_t N>
struct TuplePrint {
    static ostream &print(ostream &os, const T &t) {
        TuplePrint<T, N - 1>::print(os, t);
        os << ' ' << get<N - 1>(t);
        return os;
    }
};
template <typename T>
struct TuplePrint<T, 1> {
    static ostream &print(ostream &os, const T &t) {
        os << get<0>(t);
        return os;
    }
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
    TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
    return os;
}

// queue<T>
template <typename T>
ostream &operator<<(ostream &os, queue<T> &A) {
    auto B = A;
    while (!B.empty()) {
        os << B.front();
        B.pop();
        if (!B.empty()) os << ' ';
    }
    return os;
}

// deque<T>
template <typename T>
ostream &operator<<(ostream &os, deque<T> &A) {
    auto B = A;
    while (!B.empty()) {
        os << B.front();
        B.pop_front();
        if (!B.empty()) os << ' ';
    }
    return os;
}

// stack<T>
template <typename T>
ostream &operator<<(ostream &os, stack<T> &A) {
    auto B = A;
    stack<T> C;
    while (!B.empty()) {
        C.push(B.top());
        B.pop();
    }
    while (!C.empty()) {
        os << C.top();
        C.pop();
        if (!C.empty()) os << ' ';
    }
    return os;
}

// priority_queue<T>
template <typename T>
ostream &operator<<(ostream &os, priority_queue<T> &A) {
    auto B = A;
    while (!B.empty()) {
        os << B.top();
        B.pop();
        if (!B.empty()) os << endl;
    }
    return os;
}

// bitset<N>
template <size_t N>
ostream &operator<<(ostream &os, bitset<N> &A) {
    for (size_t i = 0; i < N; i++) {
        os << A[i];
    }
    return os;
}

// io functions
void FLUSH() {
    cout << flush;
}

void print() {
    cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(forward<Tail>(tail)...);
}

template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << sep;
    }
    cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
    cout << A << end;
}
template <typename T>
void prispa(T A) {
    priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
    if (f)
        print(A);
    else
        print(B);
    return f;
}

template <class... T>
void inp(T &...a) {
    (cin >> ... >> a);
}

} // namespace io
using namespace io;

// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<int>> edges(n, vector<int>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        u -= indexed;
        v -= indexed;
        edges[u].push_back(v);
        if (!direct) edges[v].push_back(u);
    }
    return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
    return read_edges(n, n - 1, false, indexed);
}

template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        T w;
        inp(w);
        u -= indexed;
        v -= indexed;
        edges[u].push_back({v, w});
        if (!direct) edges[v].push_back({u, w});
    }
    return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
    return read_wedges<T>(n, n - 1, false, indexed);
}

// yes / no
namespace yesno {

// yes
inline bool yes(bool f = true) {
    cout << (f ? "yes" : "no") << endl;
    return f;
}
inline bool Yes(bool f = true) {
    cout << (f ? "Yes" : "No") << endl;
    return f;
}
inline bool YES(bool f = true) {
    cout << (f ? "YES" : "NO") << endl;
    return f;
}

// no
inline bool no(bool f = true) {
    cout << (!f ? "yes" : "no") << endl;
    return f;
}
inline bool No(bool f = true) {
    cout << (!f ? "Yes" : "No") << endl;
    return f;
}
inline bool NO(bool f = true) {
    cout << (!f ? "YES" : "NO") << endl;
    return f;
}

// possible
inline bool possible(bool f = true) {
    cout << (f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Possible(bool f = true) {
    cout << (f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool POSSIBLE(bool f = true) {
    cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// impossible
inline bool impossible(bool f = true) {
    cout << (!f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Impossible(bool f = true) {
    cout << (!f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool IMPOSSIBLE(bool f = true) {
    cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// Alice Bob
inline bool Alice(bool f = true) {
    cout << (f ? "Alice" : "Bob") << endl;
    return f;
}
inline bool Bob(bool f = true) {
    cout << (f ? "Bob" : "Alice") << endl;
    return f;
}

// Takahashi Aoki
inline bool Takahashi(bool f = true) {
    cout << (f ? "Takahashi" : "Aoki") << endl;
    return f;
}
inline bool Aoki(bool f = true) {
    cout << (f ? "Aoki" : "Takahashi") << endl;
    return f;
}

} // namespace yesno
using namespace yesno;

} // namespace templates
using namespace templates;

// start other/Modint.hpp

template <int MOD>
struct Modint {
    int x;
    Modint() : x(0) {}
    Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Modint &operator+=(const Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Modint &operator-=(const Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Modint &operator*=(const Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Modint &operator/=(const Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Modint &operator%=(const Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Modint operator-() const {
        return Modint(-x);
    }

    Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Modint operator++(int) {
        Modint result = *this;
        ++*this;
        return result;
    }

    Modint operator--(int) {
        Modint result = *this;
        --*this;
        return result;
    }

    friend Modint operator+(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) += rhs;
    }

    friend Modint operator-(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) -= rhs;
    }

    friend Modint operator*(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) *= rhs;
    }

    friend Modint operator/(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) /= rhs;
    }

    friend Modint operator%(const Modint &lhs, const Modint &rhs) {
        assert(rhs.x == 0);
        return Modint(lhs);
    }

    bool operator==(const Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Modint &rhs) const {
        return x < rhs.x;
    }

    bool operator<=(const Modint &rhs) const {
        return x <= rhs.x;
    }

    bool operator>(const Modint &rhs) const {
        return x > rhs.x;
    }

    bool operator>=(const Modint &rhs) const {
        return x >= rhs.x;
    }

    Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Modint(u);
    }

    Modint pow(int64_t k) const {
        Modint ret(1);
        Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Modint &p) {
        int64_t y;
        is >> y;
        p = Modint<MOD>(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};

struct Arbitrary_Modint {
    int x;
    static int MOD;

    static void set_mod(int mod) {
        MOD = mod;
    }

    Arbitrary_Modint() : x(0) {}
    Arbitrary_Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Arbitrary_Modint operator-() const {
        return Arbitrary_Modint(-x);
    }

    Arbitrary_Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Arbitrary_Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Arbitrary_Modint operator++(int) {
        Arbitrary_Modint result = *this;
        ++*this;
        return result;
    }

    Arbitrary_Modint operator--(int) {
        Arbitrary_Modint result = *this;
        --*this;
        return result;
    }

    friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) += rhs;
    }

    friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) -= rhs;
    }

    friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) *= rhs;
    }

    friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) /= rhs;
    }

    friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        assert(rhs.x == 0);
        return Arbitrary_Modint(lhs);
    }

    bool operator==(const Arbitrary_Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Arbitrary_Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Arbitrary_Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Arbitrary_Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Arbitrary_Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Arbitrary_Modint &rhs) {
        return x >= rhs.x;
    }

    Arbitrary_Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Arbitrary_Modint(u);
    }

    Arbitrary_Modint pow(int64_t k) const {
        Arbitrary_Modint ret(1);
        Arbitrary_Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Arbitrary_Modint &p) {
        int64_t y;
        is >> y;
        p = Arbitrary_Modint(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};
int Arbitrary_Modint::MOD = 998244353;

using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint  = Arbitrary_Modint;

// end other/Modint.hpp
// restart A.cpp
using mint = modint9;
// start data_structure/UnionFind.hpp

struct UnionFind {
    int n;
    vector<int> par;
    int group;

    UnionFind() = default;
    UnionFind(int n) : n(n) {
        par.assign(n, -1);
        group = n;
    }

    int find(int x) {
        if (par[x] < 0) return x;
        par[x] = find(par[x]);
        return par[x];
    }

    bool unite(int x, int y) {
        x = find(x);
        y = find(y);
        if (x == y) return false;
        if (par[x] > par[y]) swap(x, y);
        group--;
        par[x] += par[y];
        par[y] = x;
        return true;
    }

    bool same(int x, int y) {
        return find(x) == find(y);
    }

    int size(int x) {
        return -par[find(x)];
    }

    vector<int> roots() {
        vector<int> ret;
        for (int i = 0; i < n; i++) {
            if (i == find(i)) ret.push_back(i);
        }
        return ret;
    }
};
// end data_structure/UnionFind.hpp
// restart A.cpp
// start math/pollard_rho.hpp

// start math/millerRabin.hpp
// start math/modpow.hpp

template <typename T>
T modpow(T a, long long b, T MOD) {
    T ret = 1;
    while (b > 0) {
        if (b & 1) {
            ret *= a;
            ret %= MOD;
        }
        a *= a;
        a %= MOD;
        b >>= 1;
    }
    return ret;
}

// end math/modpow.hpp
// restart math/millerRabin.hpp

bool isPrime(long long n) {
    if (n <= 1)
        return false;
    else if (n == 2)
        return true;
    else if (n % 2 == 0)
        return false;

    long long A[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
    long long s    = 0;
    long long d    = n - 1;
    while (d % 2 == 0) {
        d /= 2;
        s++;
    }

    for (auto a : A) {
        if (a % n == 0) return true;
        long long x = modpow<__int128_t>(a, d, n);
        if (x != 1) {
            bool ng = true;
            for (int i = 0; i < s; i++) {
                if (x == n - 1) {
                    ng = false;
                    break;
                };
                x = __int128_t(x) * x % n;
            }
            if (ng) return false;
        }
    }
    return true;
}
// end math/millerRabin.hpp
// restart math/pollard_rho.hpp

long long pollard(long long N) {
    if (N % 2 == 0) return 2;
    if (isPrime(N)) return N;

    long long step = 0;
    auto f         = [&](long long x) -> long long { return (__int128_t(x) * x + step) % N; };
    while (true) {
        ++step;
        long long x = step, y = f(x);
        while (true) {
            long long p = gcd(y - x + N, N);
            if (p == 0 || p == N) break;
            if (p != 1) return p;
            x = f(x);
            y = f(f(y));
        }
    }
}

vector<long long> primefact(long long N) {
    if (N == 1) return {};
    long long p = pollard(N);
    if (p == N) return {p};
    vector<long long> left  = primefact(p);
    vector<long long> right = primefact(N / p);
    left.insert(left.end(), right.begin(), right.end());
    sort(left.begin(), left.end());
    return left;
}
// end math/pollard_rho.hpp
// restart A.cpp

void solve() {
    INT(n, m);
    vec(int, P, n);
    iota(all(P), 0);
    fori(m) {
        INT(t);
        VEC(int, S, t);
        vec(int, nex, t);
        fori(i, t) nex[i]      = P[S[i] - 1];
        fori(i, t) P[S[i] - 1] = nex[(i + t - 1) % t];
    }

    UnionFind UF(n);
    fori(i, n) UF.unite(i, P[i]);
    map<ll, int> cnt;
    fori(i, n) {
        if (i != UF.find(i)) continue;
        if (UF.size(i) == 1) continue;
        auto res = primefact(UF.size(i));
        int row  = 0;
        int b    = res[0];
        for (auto p : res) {
            if (p == b)
                row++;
            else {
                chmax(cnt[b], row);
                row = 1;
                b   = p;
            }
        }
        chmax(cnt[b], row);
    }
    mint ans = 1;
    for (auto [p, e] : cnt) {
        ans *= mint(p).pow(e);
    }
    print(ans);
}

int main() {
    cin.tie(0)->sync_with_stdio(0);
    // cout << fixed << setprecision(12);
    int t;
    t = 1;
    // cin >> t;
    while (t--) solve();
    return 0;
}

// end A.cpp
0