結果

問題 No.2475 Distance Permutation
ユーザー ecotteaecottea
提出日時 2023-09-21 18:26:39
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 4,098 ms / 5,000 ms
コード長 22,901 bytes
コンパイル時間 4,532 ms
コンパイル使用メモリ 285,200 KB
実行使用メモリ 171,084 KB
最終ジャッジ日時 2024-07-07 12:04:34
合計ジャッジ時間 109,148 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2,410 ms
170,564 KB
testcase_01 AC 2,397 ms
170,640 KB
testcase_02 AC 3,912 ms
170,664 KB
testcase_03 AC 3,820 ms
170,692 KB
testcase_04 AC 3,863 ms
170,564 KB
testcase_05 AC 3,822 ms
170,564 KB
testcase_06 AC 3,823 ms
170,564 KB
testcase_07 AC 3,454 ms
171,084 KB
testcase_08 AC 3,428 ms
170,952 KB
testcase_09 AC 3,466 ms
170,836 KB
testcase_10 AC 3,432 ms
170,864 KB
testcase_11 AC 3,412 ms
171,032 KB
testcase_12 AC 3,460 ms
170,936 KB
testcase_13 AC 3,869 ms
170,752 KB
testcase_14 AC 3,545 ms
170,916 KB
testcase_15 AC 4,098 ms
170,712 KB
testcase_16 AC 3,938 ms
170,780 KB
testcase_17 AC 3,860 ms
170,488 KB
testcase_18 AC 3,909 ms
170,692 KB
testcase_19 AC 3,878 ms
170,564 KB
testcase_20 AC 3,898 ms
170,560 KB
testcase_21 AC 3,887 ms
170,568 KB
testcase_22 AC 3,302 ms
171,080 KB
testcase_23 AC 3,405 ms
170,896 KB
testcase_24 AC 3,610 ms
170,944 KB
testcase_25 AC 3,827 ms
170,616 KB
testcase_26 AC 3,332 ms
171,020 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi; using ull = unsigned long long;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
inline int msb(__int128 n) { return (n >> 64) != 0 ? (127 - __builtin_clzll((ll)(n >> 64))) : n != 0 ? (63 - __builtin_clzll((ll)(n))) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
void zikken() {
int k = 3;
vl seq;
repi(n, 1, 20) {
vl dp(n + 1);
dp[0] = 1;
rep(i, n) {
vl ndp(n + 1);
repi(j, 0, n) {
ndp[j] += dp[j] * (j - i);
repi(j2, j + 1, min(j + k, n)) ndp[j2] += dp[j];
}
dp = move(ndp);
}
seq.push_back(dp.back());
}
dump_list(seq);
exit(0);
}
/*
k=3: {1, 2, 6, 18, 66, 276, 1212, 5916, 31068, 171576, 1014696, 6319512, 41143896, 281590128, 2007755856, 14871825936, 114577550352, 913508184096,
    7526682826848, 64068860545056}
https://oeis.org/A057693
nn=20; Range[0, nn]!CoefficientList[Series[Exp[ x + x^2/2 + x^3/3], {x, 0, nn}], x] (* Geoffrey Critzer, Oct 28 2012 *)
*/
//
/*
* Factorial_mint(int N) : O(n)
* N
*
* mint fact(int n) : O(1)
* n!
*
* mint fact_inv(int n) : O(1)
* 1/n! n 0
*
* mint inv(int n) : O(1)
* 1/n
*
* mint perm(int n, int r) : O(1)
* nPr
*
* mint bin(int n, int r) : O(1)
* nCr
*
* mint mul(vi rs) : O(|rs|)
* nC[rs] n = Σrs
*/
class Factorial_mint {
int n_max;
//
vm fac, fac_inv;
public:
// n! O(n)
Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
fac[0] = 1;
repi(i, 1, n) fac[i] = fac[i - 1] * i;
fac_inv[n] = fac[n].inv();
repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
}
Factorial_mint() : n_max(0) {} //
// n!
mint fact(int n) const {
// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b
Assert(0 <= n && n <= n_max);
return fac[n];
}
// 1/n! n 0
mint fact_inv(int n) const {
// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h
Assert(n <= n_max);
if (n < 0) return 0;
return fac_inv[n];
}
// 1/n
mint inv(int n) const {
// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d
Assert(0 < n && n <= n_max);
return fac[n - 1] * fac_inv[n];
}
// nPr
mint perm(int n, int r) const {
// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[n - r];
}
// nCr
mint bin(int n, int r) const {
// verify : https://atcoder.jp/contests/abc034/tasks/abc034_c
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
return fac[n] * fac_inv[r] * fac_inv[n - r];
}
// nC[rs]
mint mul(const vi& rs) const {
// verify : https://yukicoder.me/problems/no/2141
if (*min_element(all(rs)) < 0) return 0;
int n = accumulate(all(rs), 0);
Assert(n <= n_max);
mint res = fac[n];
repe(r, rs) res *= fac_inv[r];
return res;
}
};
//
/*
* MFPS() : O(1)
* f = 0
*
* MFPS(mint c0) : O(1)
* f = c0
*
* MFPS(mint c0, int n) : O(n)
* n f = c0
*
* MFPS(vm c) : O(n)
* f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1)
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
* CONV
*
* c + f, f + c : O(1) f + g : O(n)
* f - c : O(1) c - f, f - g, -f : O(n)
* c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n k)k : g
* f / c : O(n) f / g : O(n log n) f / g_sp : O(n k)k : g
*
* g_sp {, } vector
* : g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
* 1 / f mod z^d
* : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
* f g
* : g 0
*
* int f.deg(), int f.size() : O(1)
* f []
*
* MFPS::monomial(int d, mint c = 1) : O(d)
* c z^d
*
* mint f.assign(mint c) : O(n)
* f z c
*
* f.resize(int d) : O(1)
* mod z^d
*
* f.resize() : O(n)
*
*
* f >> d, f << d : O(n)
* d []
* z^d z^d
*/
struct MFPS {
using SMFPS = vector<pair<int, mint>>;
int n; // + 1
vm c; //
inline static vm(*CONV)(const vm&, const vm&) = convolution; //
// 0
MFPS() : n(0) {}
MFPS(mint c0) : n(1), c({ c0 }) {}
MFPS(int c0) : n(1), c({ mint(c0) }) {}
MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }
//
MFPS(const MFPS& f) = default;
MFPS& operator=(const MFPS& f) = default;
MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }
//
bool operator==(const MFPS& g) const { return c == g.c; }
bool operator!=(const MFPS& g) const { return c != g.c; }
//
inline mint const& operator[](int i) const { return c[i]; }
inline mint& operator[](int i) { return c[i]; }
//
int deg() const { return n - 1; }
int size() const { return n; }
static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
CONV = CONV_;
}
//
MFPS& operator+=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
else {
rep(i, n) c[i] += g.c[i];
repi(i, n, g.n - 1) c.push_back(g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }
//
MFPS& operator+=(const mint& sc) {
if (n == 0) { n = 1; c = { sc }; }
else { c[0] += sc; }
return *this;
}
MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }
//
MFPS& operator-=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
else {
rep(i, n) c[i] -= g.c[i];
repi(i, n, g.n - 1) c.push_back(-g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }
//
MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }
//
MFPS operator-() const { return MFPS(*this) *= -1; }
//
MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }
//
MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }
//
MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }
//
MFPS inv(int d) const {
// https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series
//
// 1 / f mod z^d
// f g = 1 (mod z^d)
// g
// d 1, 2, 4, ..., 2^i
//
// d = 1
// g = 1 / f[0] (mod z^1)
//
//
//
// g = h (mod z^k)
//
// g mod z^(2 k)
//
// g - h = 0 (mod z^k)
// ⇒ (g - h)^2 = 0 (mod z^(2 k))
// ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
// ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
// ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k))  (f g = 1 (mod z^d) )
// ⇔ g = (2 - f h) h (mod z^(2 k))
//
//
// d ≦ 2^i i d
Assert(!c.empty());
Assert(c[0] != 0);
MFPS g(c[0].inv());
for (int k = 1; k < d; k *= 2) {
int len = max(min(2 * k, d), 1);
MFPS tmp(0, len);
rep(i, min(len, n)) tmp[i] = -c[i]; // -f
tmp *= g; // -f h
tmp.resize(len);
tmp[0] += 2; // 2 - f h
g *= tmp; // (2 - f h) h
g.resize(len);
}
return g;
}
MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }
//
MFPS quotient(const MFPS& g) const {
// : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
//
// f(x) = g(x) q(x) + r(x) q(x)
// f n - 1, g m - 1 (n >= m)
// q n - mr m - 2
//
// f^R f
// f^R(x) := f(1/x) x^(n-1)
//
//
// x → 1/x
// f(1/x) = g(1/x) q(1/x) + r(1/x)
// ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
// ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
// ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
// ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
// ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1))
//
//
// q mod x^(n-m+1)
// q n - m q
if (n < g.n) return MFPS();
return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
}
MFPS reminder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
return (*this - this->quotient(g) * g).resize(g.n - 1);
}
pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
pair<MFPS, MFPS> res;
res.first = this->quotient(g);
res.second = (*this - res.first * g).resize(g.n - 1);
return res;
}
//
MFPS& operator*=(const SMFPS& g) {
// g
auto it0 = g.begin();
mint g0 = 0;
if (it0->first == 0) {
g0 = it0->second;
it0++;
}
// DP
repir(i, n - 1, 0) {
//
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] += c[i] * gj;
}
//
c[i] *= g0;
}
return *this;
}
MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }
//
MFPS& operator/=(const SMFPS& g) {
// g
auto it0 = g.begin();
Assert(it0->first == 0 && it0->second != 0);
mint g0_inv = it0->second.inv();
it0++;
// DP
rep(i, n) {
//
c[i] *= g0_inv;
//
for (auto it = it0; it != g.end(); it++) {
auto [j, gj] = *it;
if (i + j >= n) break;
c[i + j] -= c[i] * gj;
}
}
return *this;
}
MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }
//
MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }
//
static MFPS monomial(int d, mint coef = 1) {
MFPS mono(0, d + 1);
mono[d] = coef;
return mono;
}
//
MFPS& resize() {
// 0
while (n > 0 && c[n - 1] == 0) {
c.pop_back();
n--;
}
return *this;
}
// x^d
MFPS& resize(int d) {
n = d;
c.resize(d);
return *this;
}
//
mint assign(const mint& x) const {
mint val = 0;
repir(i, n - 1, 0) val = val * x + c[i];
return val;
}
//
MFPS& operator>>=(int d) {
n += d;
c.insert(c.begin(), d, 0);
return *this;
}
MFPS& operator<<=(int d) {
n -= d;
if (n <= 0) { c.clear(); n = 0; }
else c.erase(c.begin(), c.begin() + d);
return *this;
}
MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
MFPS operator<<(int d) const { return MFPS(*this) <<= d; }
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const MFPS& f) {
if (f.n == 0) os << 0;
else {
rep(i, f.n) {
os << f[i].val() << "z^" << i;
if (i < f.n - 1) os << " + ";
}
}
return os;
}
#endif
};
//O(n log n)
/*
* log f(z) mod z^d
*
* : f(0) = 1fm d!
*/
MFPS log_fps(const MFPS& f, int d, const Factorial_mint& fm) {
// : https://qiita.com/hotman78/items/f0e6d2265badd84d429a
// verify : https://judge.yosupo.jp/problem/log_of_formal_power_series
//
// g(z) = log f(z) z
// g'(z) = f'(z) / f(z)
//
// g(z) = ∫ f'(z) / f(z) dz
//
int n = sz(f);
MFPS g(0, max(n - 1, 1));
repi(i, 1, n - 1) g[i - 1] = f[i] * i; // f'(z)
g *= f.inv(d - 1); // f'(z) / f(z)
g.resize(d);
repir(i, d - 1, 1) g[i] = g[i - 1] * fm.inv(i); // ∫ f'(z) / f(z) dz
g[0] = 0;
return g;
}
//O(n log n)
/*
* exp f(z) mod z^d
*
* : f(0) = 0fm d!
*
*
*/
MFPS exp_fps(const MFPS& f, int d, const Factorial_mint& fm) {
// : https://qiita.com/hotman78/items/f0e6d2265badd84d429a
// verify : https://judge.yosupo.jp/problem/exp_of_formal_power_series
//
// g(z) = exp f(z)
// log g(z) = f(z)
//
//
// f(0) = 0 mod z^1
// log(1) ≡ f(z) mod z^1
//
//
// mod z^k
// log h(z) ≡ f(z) mod z^k
//
// g = h - (log h - f) / (log h)'
// ⇔ g = h (f + 1 - log h)
//
// log g(z) ≡ f(z) mod z^(2 k)
//
//
// g
// log g = f g
MFPS g(1);
for (int k = 1; k < d; k *= 2) {
int len = max(min(2 * k, d), 1);
auto tmp = log_fps(g, len, fm); // log h
rep(i, len) tmp[i] = (i < sz(f) ? f[i] : 0) - tmp[i]; // f - log h
tmp[0] += 1; // f + 1 - log h
g *= tmp; // h (f + 1 - log h)
g.resize(len);
}
return g;
}
void TLE() {
int k, q;
cin >> k >> q;
int N = (int)1e5;
Factorial_mint fm(N + 10);
MFPS f(0, k + 1);
repi(i, 1, k) f[i] = fm.inv(i);
f = exp_fps(f, N + 1, fm);
// repi(i, 0, N) f[i] *= fm.fact(i);
rep(hoge, q) {
int n, l, r;
cin >> n >> l >> r;
l--;
mint res;
repi(i, l, r - 1) {
int lenL = i;
int lenR = n - 1 - i;
// res += f[lenL] * f[lenR] * fm.bin(lenL + lenR, lenL);
res += f[lenL] * f[lenR];
}
res *= fm.fact(n - 1);
cout << res << endl;
}
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
// zikken();
int k, q;
cin >> k >> q;
constexpr int W = 317;
// constexpr int W = 4;
constexpr int N = W * W;
Factorial_mint fm(N);
MFPS f(0, k + 1);
repi(i, 1, k) f[i] = fm.inv(i);
vm a = exp_fps(f, N, fm).c;
// dump(a);
vvm c(W);
rep(i, W) {
vm sub(a.begin() + i * W, a.begin() + (i + 1) * W);
c[i] = convolution(a, sub);
}
// dumpel(c);
rep(hoge, q) {
int n, l, r;
cin >> n >> l >> r;
l--;
int lW = (l + W - 1) / W;
int rW = r / W;
mint res;
if (lW <= rW) {
repi(i, l, lW * W - 1) res += a[i] * a[n - 1 - i];
repi(j, lW, rW - 1) res += c[j][n - 1 - j * W];
repi(i, rW * W, r - 1) res += a[i] * a[n - 1 - i];
}
else {
repi(i, l, r - 1) res += a[i] * a[n - 1 - i];
}
res *= fm.fact(n - 1);
cout << res << endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0