結果
| 問題 | 
                            No.2479 Sum of Squares
                             | 
                    
| コンテスト | |
| ユーザー | 
                             Nachia
                         | 
                    
| 提出日時 | 2023-09-22 21:23:22 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 56 ms / 2,000 ms | 
| コード長 | 2,615 bytes | 
| コンパイル時間 | 791 ms | 
| コンパイル使用メモリ | 78,216 KB | 
| 最終ジャッジ日時 | 2025-02-17 00:16:30 | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge4 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 22 | 
ソースコード
#line 1 "..\\Main.cpp"
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <atcoder/modint>
#line 2 "D:\\Programming\\VSCode\\competitive-cpp\\nachia\\math\\floor-of-kth-root.hpp"
#include <cassert>
namespace nachia{
namespace internal{
// mod 2^64
constexpr unsigned long long PowerOfULongLong(unsigned long long a, unsigned long long i){
    unsigned long long res = 1;
    while(i){ if(i&1){ res *= a; } i /= 2; a *= a; }
    return res;
}
}
unsigned long long FloorOfKthRoot(unsigned long long real, unsigned long long k){
    using u64 = unsigned long long;
    assert(k != 0);
    if(real <= 1) return real;
    if(k >= 64) return 1;
    if(k == 1) return real;
    struct Precalc{
        // a^i <= x
        static constexpr bool lesseq(u64 a, int i, u64 x) {
            if (a == 0) return true;
            for(int j=0; j<i; j++) x /= a;
            return x >= 1;
        }
        unsigned long long BORDER[64];
        constexpr Precalc() : BORDER() {
            for (int idx = 2; idx <= 63; idx++) {
                u64 l = 0, r = 1ull << 33;
                while (l + 1 < r) {
                    u64 m = (l + r) / 2;
                    if (lesseq(m, idx, ~0ull)) l = m;
                    else r = m;
                }
                BORDER[idx] = r;
            }
        };
    };
    constexpr Precalc precalc;
    u64 l = 0, r = precalc.BORDER[k];
    while (l + 1 < r) {
        u64 m = (l + r) / 2;
        if(internal::PowerOfULongLong(m, k) <= real) l = m;
        else r = m;
    }
    return l;
}
unsigned long long CeilOfKthRoot(unsigned long long real, unsigned long long k){
    if(real <= 1) return real;
    if(k >= 64) return 2;
    if(k == 1) return real;
    unsigned long long x = FloorOfKthRoot(real, k);
    if(internal::PowerOfULongLong(x, k) != real) x++;
    return x;
}
} // namespace nachia
#line 7 "..\\Main.cpp"
using namespace std;
using i32 = int;
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<(int)(n); i++)
const i64 INF = 1001001001001001001;
using Modint = atcoder::static_modint<998244353>;
int main(){
    i64 S; cin >> S;
    vector<i64> X;
    while(S != 0){
        i64 x = nachia::FloorOfKthRoot(S, 2);
        X.push_back(x*x);
        S -= x * x;
    }
    cout << X.size() << '\n';
    rep(i,X.size()){
        if(i) cout << ' ';
        cout << X[i];
    }
    cout << '\n';
    return 0;
}
struct ios_do_not_sync{
    ios_do_not_sync(){
        ios::sync_with_stdio(false);
        cin.tie(nullptr);
    }
} ios_do_not_sync_instance;
            
            
            
        
            
Nachia