結果
問題 | No.2485 Add to Variables (Another) |
ユーザー |
👑 |
提出日時 | 2023-09-22 22:00:52 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 54 ms / 2,000 ms |
コード長 | 11,331 bytes |
コンパイル時間 | 2,512 ms |
コンパイル使用メモリ | 115,496 KB |
実行使用メモリ | 8,448 KB |
最終ジャッジ日時 | 2024-07-08 12:46:07 |
合計ジャッジ時間 | 3,749 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 39 |
ソースコード
#include <cassert>#include <cmath>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <algorithm>#include <bitset>#include <complex>#include <deque>#include <functional>#include <iostream>#include <limits>#include <map>#include <numeric>#include <queue>#include <set>#include <sstream>#include <string>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using Int = long long;template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i>= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }#define COLOR(s) ("\x1b[" s "m")////////////////////////////////////////////////////////////////////////////////template <unsigned M_> struct ModInt {static constexpr unsigned M = M_;unsigned x;constexpr ModInt() : x(0U) {}constexpr ModInt(unsigned x_) : x(x_ % M) {}constexpr ModInt(unsigned long long x_) : x(x_ % M) {}constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }ModInt pow(long long e) const {if (e < 0) return inv().pow(-e);ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;}ModInt inv() const {unsigned a = M, b = x; int y = 0, z = 1;for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }assert(a == 1U); return ModInt(y);}ModInt operator+() const { return *this; }ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }explicit operator bool() const { return x; }bool operator==(const ModInt &a) const { return (x == a.x); }bool operator!=(const ModInt &a) const { return (x != a.x); }friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }};////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////constexpr unsigned MO = 998244353U;constexpr unsigned MO2 = 2U * MO;constexpr int FFT_MAX = 23;using Mint = ModInt<MO>;constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U,166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U,733596141U, 267099868U, 15311432U};constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U,685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U,428961804U, 382752275U, 469870224U};constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U,856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U,867605899U};constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U,860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U,103369235U};// as[rev(i)] <- \sum_j \zeta^(ij) as[j]void fft(Mint *as, int n) {assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);int m = n;if (m >>= 1) {for (int i = 0; i < m; ++i) {const unsigned x = as[i + m].x; // < MOas[i + m].x = as[i].x + MO - x; // < 2 MOas[i].x += x; // < 2 MO}}if (m >>= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < MOas[i + m].x = as[i].x + MO - x; // < 3 MOas[i].x += x; // < 3 MO}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}for (; m; ) {if (m >>= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < MOas[i + m].x = as[i].x + MO - x; // < 4 MOas[i].x += x; // < 4 MO}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}if (m >>= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned x = (prod * as[i + m]).x; // < MOas[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MOas[i + m].x = as[i].x + MO - x; // < 3 MOas[i].x += x; // < 3 MO}prod *= FFT_RATIOS[__builtin_ctz(++h)];}}}for (int i = 0; i < n; ++i) {as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MOas[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO}}// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]void invFft(Mint *as, int n) {assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);int m = 1;if (m < n >> 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + m; ++i) {const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MOas[i].x += as[i + m].x; // < 2 MOas[i + m].x = (prod.x * y) % MO; // < MO}prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];}m <<= 1;}for (; m < n >> 1; m <<= 1) {Mint prod = 1U;for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {for (int i = i0; i < i0 + (m >> 1); ++i) {const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MOas[i].x += as[i + m].x; // < 4 MOas[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MOas[i + m].x = (prod.x * y) % MO; // < MO}for (int i = i0 + (m >> 1); i < i0 + m; ++i) {const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MOas[i].x += as[i + m].x; // < 2 MOas[i + m].x = (prod.x * y) % MO; // < MO}prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];}}if (m < n) {for (int i = 0; i < m; ++i) {const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MOas[i].x += as[i + m].x; // < 4 MOas[i + m].x = y; // < 4 MO}}const Mint invN = Mint(n).inv();for (int i = 0; i < n; ++i) {as[i] *= invN;}}void fft(vector<Mint> &as) {fft(as.data(), as.size());}void invFft(vector<Mint> &as) {invFft(as.data(), as.size());}vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {if (as.empty() || bs.empty()) return {};const int len = as.size() + bs.size() - 1;int n = 1;for (; n < len; n <<= 1) {}as.resize(n); fft(as);bs.resize(n); fft(bs);for (int i = 0; i < n; ++i) as[i] *= bs[i];invFft(as);as.resize(len);return as;}vector<Mint> square(vector<Mint> as) {if (as.empty()) return {};const int len = as.size() + as.size() - 1;int n = 1;for (; n < len; n <<= 1) {}as.resize(n); fft(as);for (int i = 0; i < n; ++i) as[i] *= as[i];invFft(as);as.resize(len);return as;}////////////////////////////////////////////////////////////////////////////////constexpr int LIM_INV = 400'010;Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];void prepare() {inv[1] = 1;for (int i = 2; i < LIM_INV; ++i) {inv[i] = -((Mint::M / i) * inv[Mint::M % i]);}fac[0] = invFac[0] = 1;for (int i = 1; i < LIM_INV; ++i) {fac[i] = fac[i - 1] * i;invFac[i] = invFac[i - 1] * inv[i];}}Mint binom(Int n, Int k) {if (n < 0) {if (k >= 0) {return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);} else if (n - k >= 0) {return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);} else {return 0;}} else {if (0 <= k && k <= n) {assert(n < LIM_INV);return fac[n] * invFac[k] * invFac[n - k];} else {return 0;}}}int N, M;vector<int> B;int main() {prepare();for (; ~scanf("%d%d", &N, &M); ) {B.resize(N + 2);for (int i = 1; i <= N; ++i) {scanf("%d", &B[i]);}B[0] = B[N + 1] = 0;vector<int> D(N + 1);for (int i = 0; i <= N; ++i) {D[i] = B[i + 1] - B[i];}auto ds = D;vector<int> cs;for (int i = 1; i < N; ++i) {const int c = abs(ds[i]);cs.push_back(c);if (ds[i] >= 0) {ds[N] += ds[i];} else {ds[0] += ds[i];}}// cerr<<"B = "<<B<<", D = "<<D<<": cs = "<<cs<<", ds[0] = "<<ds[0]<<endl;assert(ds[0] + ds[N] == 0);Mint ans = 0;if (ds[0] >= 0) {int sumC = 0;for (const int c : cs) {sumC += c;}vector<Mint> prod(M/2 + 1, 0);prod[0] = 1;for (const int c : cs) {vector<Mint> coef(M/2 + 1, 0);for (int i = 0; i <= M/2; ++i) {coef[i] = invFac[i] * invFac[i + c];}prod = convolve(prod, coef);prod.resize(M/2 + 1);}for (int i = 0; i <= M/2; ++i) if (i <= ds[0]) {int m = M;m -= (2 * i + sumC);m -= (ds[0] - i);if (m >= 0) {Mint num = prod[i];num *= invFac[ds[0] - i];num *= invFac[m];ans += num;}}ans *= fac[M];}printf("%u\n", ans.x);}return 0;}