結果

問題 No.2480 Sequence Sum
ユーザー Keroru
提出日時 2023-09-22 22:01:23
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 147 ms / 500 ms
コード長 8,600 bytes
コンパイル時間 367 ms
コンパイル使用メモリ 81,920 KB
実行使用メモリ 92,288 KB
最終ジャッジ日時 2024-07-26 14:37:47
合計ジャッジ時間 3,163 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 13
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
read=sys.stdin.buffer.read;readline=sys.stdin.buffer.readline;input=lambda:sys.stdin.readline().rstrip()
import bisect,string,math,time,functools,random,fractions
from bisect import*
from heapq import heappush,heappop,heapify
from collections import deque,defaultdict,Counter
from itertools import permutations,combinations,groupby
import itertools
rep=range;R=range
def I():return int(input())
def LI():return [int(i) for i in input().split()]
def SLI():return sorted([int(i) for i in input().split()])
def LI_():return [int(i)-1 for i in input().split()]
def S_():return input()
def IS():return input().split()
def LS():return [i for i in input().split()]
def NI(n):return [int(input()) for i in range(n)]
def NI_(n):return [int(input())-1 for i in range(n)]
def NLI(n):return [[int(i) for i in input().split()] for i in range(n)]
def NLI_(n):return [[int(i)-1 for i in input().split()] for i in range(n)]
def StoLI():return [ord(i)-97 for i in input()]
def ItoS(n):return chr(n+97)
def LtoS(ls):return ''.join([chr(i+97) for i in ls])
def RLI(n=8,a=1,b=10):return [random.randint(a,b)for i in range(n)]
def RI(a=1,b=10):return random.randint(a,b)
def GI(V,E,ls=None,Directed=False,index=1):
org_inp=[];g=[[] for i in range(V)]
FromStdin=True if ls==None else False
for i in range(E):
if FromStdin:
inp=LI()
org_inp.append(inp)
else:
inp=ls[i]
if len(inp)==2:a,b=inp;c=1
else:a,b,c=inp
if index==1:a-=1;b-=1
aa=a,c,;bb=b,c,;g[a].append(bb)
if not Directed:g[b].append(aa)
return g,org_inp
def RE(E):
rt=[[]for i in range(len(E))]
for i in range(len(E)):
for nb,d in E[i]:
rt[nb]+=(i,d),
return rt
def RLE(it):
rt=[]
for i in it:
if rt and rt[-1][0]==i:rt[-1][1]+=1
else:rt+=[i,1],
return rt
def GGI(h,w,search=None,replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1):
#h,w,g,sg=GGI(h,w,search=['S','G'],replacement_of_found='.',mp_def={'#':1,'.':0},boundary=1) # sample usage
mp=[boundary]*(w+2);found={}
for i in R(h):
s=input()
for char in search:
if char in s:
found[char]=((i+1)*(w+2)+s.index(char)+1)
mp_def[char]=mp_def[replacement_of_found]
mp+=[boundary]+[mp_def[j] for j in s]+[boundary]
mp+=[boundary]*(w+2)
return h+2,w+2,mp,found
def TI(n):return GI(n,n-1)
def accum(ls):
rt=[0]
for i in ls:rt+=[rt[-1]+i]
return rt
def bit_combination(n,base=2):
rt=[]
for tb in R(base**n):s=[tb//(base**bt)%base for bt in R(n)];rt+=[s]
return rt
def gcd(x,y):
if y==0:return x
if x%y==0:return y
while x%y!=0:x,y=y,x%y
return y
def YN(x):print(['NO','YES'][x])
def Yn(x):print(['No','Yes'][x])
def show(*inp,end='\n'):
if show_flg:print(*inp,end=end)
inf=float('inf')
FourNb=[(-1,0),(1,0),(0,1),(0,-1)];EightNb=[(-1,0),(1,0),(0,1),(0,-1),(1,1),(-1,-1),(1,-1),(-1,1)];compas=dict(zip('WENS',FourNb));cursol=dict(zip
    ('UDRL',FourNb));HexNb=[(-1,0),(-1,-1),(0,1),(0,-1),(1,1),(1,0)]
alp=[chr(ord('a')+i)for i in range(26)]
#sys.setrecursionlimit(10**7)
def gcj(t,*a):
print('Case #{}:'.format(t+1),*a)
def INP():
N=80
n=random.randint(1,N)
x=random.randint(1,N)
n,d=RLI(2,1,10)
k=RI(1,n)
return n,d,k
def Rtest(T):
case,err=0,0
for i in range(T):
inp=INP()
#show(inp)
a1=naive(*inp)
a2=solve(*inp)
if a1!=a2:
print(inp)
n,d,k=inp
#a,b=bin(n)[2:],bin(x)[2:]
show(n,d,k)
print('naive',a1)
print('solve',a2)
err+=1
case+=1
print('Tested',case,'case with',err,'errors')
def graph():
g=[[]for i in range(n)]
for i in range(m):
u,v=LI()
g[u]+=v,
g[v]+=u,
mo=998244353
#mo=10**9+7
show_flg=False
show_flg=True
#####################################################################################################################################################
    ###################
# Verified by
# https://yukicoder.me/problems/no/979
# https://atcoder.jp/contests/abc152/tasks/abc152_e
## return prime factors of N as dictionary {prime p:power of p}
## within 2 sec for N = 2*10**20+7
def isPrimeMR(n):
d = n - 1
d = d // (d & -d)
L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = y * y % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i * i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += i % 2 + (3 if i % 3 == 1 else 1)
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
## return divisors of n as list
def divisors(N):
pf = primeFactor(N)
ret = [1]
for p in pf:
ret_prev = ret
ret = []
for i in range(pf[p]+1):
for r in ret_prev:
ret.append(r * (p ** i))
return sorted(ret)
## return the array s such that s[q] = the minimum prime factor of q
def sieve(x):
s=[i for i in range(x+1)]
p=2
while p*p<=x:
if s[p]==p:
for q in range(2*p,x+1,p):
if s[q]==q:
s[q]=p
p+=1
return s
## return the list of prime numbers in [2,N], using eratosthenes sieve
## around 800 ms for N = 10**6 by PyPy3 (7.3.0) @ AtCoder
def PrimeNumSet(N):
M=int(N**0.5)
seachList=[i for i in range(2,N+1)]
primes=[]
while seachList:
if seachList[0]>M:
break
primes.append(seachList[0])
tmp=seachList[0]
seachList=[i for i in seachList if i%tmp!=0]
return primes+seachList
## retrun LCM of numbers in list b
## within 2sec for no of B = 10*5 and Bi < 10**6
def LCM(b,mo=10**9+7):
prs=PrimeNumSet(max(b))
M=dict(zip(prs,[0]*len(prs)))
for i in b:
dc=primeFactor(i)
for j,k in dc.items():
M[j]=max(M[j],k)
r=1
for j,k in M.items():
if k!=0:
r*=pow(j,k,mo)
r%=mo
return r
## return (a,b,gcd(x,y)) s.t. a*x+b*y=gcd(x,y)
def extgcd(x,y):
if y==0:
return 1,0
r0,r1,s0,s1 = x,y,1,0
while r1!= 0:
r0,r1,s0,s1=r1,r0%r1,s1,s0-r0//r1*s1
return s0,(r0-s0*x)//y,x*s0+y*(r0-s0*x)//y
## return x,LCM(mods) s.t. x = rem_i (mod_i), x = -1 if such x doesn't exist
## verified by ABC193E
## https://atcoder.jp/contests/abc193/tasks/abc193_e
def crt(rems,mods):
n=len(rems)
if n!=len(mods):
return NotImplemented
x,d=0,1
for r,m in zip(rems,mods):
a,b,g=extgcd(d,m)
x,d=(m*b*x+d*a*r)//g,d*(m//g)
x%=d
for r,m in zip(rems,mods):
if r!=x%m:
return -1,d
return x,d
## returns the maximum integer rt s.t. rt*rt<=x
## verified by ABC191D
## https://atcoder.jp/contests/abc191/tasks/abc191_d
def intsqrt(x):
if x<0:
return NotImplemented
rt=int(x**0.5)-1
while (rt+1)**2<=x:
rt+=1
return rt
ans=0
n=I()
d=divisors(n)
ans=n-len(d)
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0