結果
| 問題 |
No.916 Encounter On A Tree
|
| ユーザー |
tonegawa
|
| 提出日時 | 2023-09-24 15:35:32 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 48 ms / 2,000 ms |
| コード長 | 23,253 bytes |
| コンパイル時間 | 1,476 ms |
| コンパイル使用メモリ | 140,668 KB |
| 最終ジャッジ日時 | 2025-02-17 02:08:34 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 56 |
ソースコード
#line 1 ".lib/template.hpp"
#include <iostream>
#include <string>
#include <vector>
#include <array>
#include <tuple>
#include <stack>
#include <queue>
#include <deque>
#include <algorithm>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <cmath>
#include <functional>
#include <cassert>
#include <climits>
#include <iomanip>
#include <numeric>
#include <memory>
#include <random>
#include <thread>
#include <chrono>
#define allof(obj) (obj).begin(), (obj).end()
#define range(i, l, r) for(int i=l;i<r;i++)
#define unique_elem(obj) obj.erase(std::unique(allof(obj)), obj.end())
#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)
#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))
#define bit_kth(i, k) ((i >> k)&1)
#define bit_highest(i) (i?63-__builtin_clzll(i):-1)
#define bit_lowest(i) (i?__builtin_ctzll(i):-1)
#define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t))
using ll = long long;
using ld = long double;
using ul = uint64_t;
using pi = std::pair<int, int>;
using pl = std::pair<ll, ll>;
using namespace std;
template<typename F, typename S>
std::ostream &operator<<(std::ostream &dest, const std::pair<F, S> &p){
dest << p.first << ' ' << p.second;
return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::vector<std::vector<T>> &v){
int sz = v.size();
if(sz==0) return dest;
for(int i=0;i<sz;i++){
int m = v[i].size();
for(int j=0;j<m;j++) dest << v[i][j] << (i!=sz-1&&j==m-1?'\n':' ');
}
return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::vector<T> &v){
int sz = v.size();
if(sz==0) return dest;
for(int i=0;i<sz-1;i++) dest << v[i] << ' ';
dest << v[sz-1];
return dest;
}
template<typename T, size_t sz>
std::ostream &operator<<(std::ostream &dest, const std::array<T, sz> &v){
if(sz==0) return dest;
for(int i=0;i<sz-1;i++) dest << v[i] << ' ';
dest << v[sz-1];
return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::set<T> &v){
for(auto itr=v.begin();itr!=v.end();){
dest << *itr;
itr++;
if(itr!=v.end()) dest << ' ';
}
return dest;
}
template<typename T, typename E>
std::ostream &operator<<(std::ostream &dest, const std::map<T, E> &v){
for(auto itr=v.begin();itr!=v.end();){
dest << '(' << itr->first << ", " << itr->second << ')';
itr++;
if(itr!=v.end()) dest << '\n';
}
return dest;
}
std::ostream &operator<<(std::ostream &dest, __int128_t value) {
std::ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = std::end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = std::end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(std::ios_base::badbit);
}
}
return dest;
}
template<typename T>
vector<T> make_vec(size_t sz, T val){return std::vector<T>(sz, val);}
template<typename T, typename... Tail>
auto make_vec(size_t sz, Tail ...tail){
return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));
}
template<typename T>
vector<T> read_vec(size_t sz){
std::vector<T> v(sz);
for(int i=0;i<(int)sz;i++) std::cin >> v[i];
return v;
}
template<typename T, typename... Tail>
auto read_vec(size_t sz, Tail ...tail){
auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);
for(int i=0;i<(int)sz;i++) v[i] = read_vec<T>(tail...);
return v;
}
void io_init(){
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
}
#line 1 ".lib/math/mod.hpp"
#line 6 ".lib/math/mod.hpp"
#include <type_traits>
#line 8 ".lib/math/mod.hpp"
#include <ostream>
#line 1 ".lib/math/minior/mod_base.hpp"
#line 4 ".lib/math/minior/mod_base.hpp"
// @param m `1 <= m`
constexpr long long safe_mod(long long x, long long m){
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett{
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1){}
unsigned int umod()const{return _m;}
unsigned int mul(unsigned int a, unsigned int b)const{
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x = (unsigned long long)(((unsigned __int128)(z) * im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m){
if(m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while(n){
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for(long long a : bases){
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while(t != n - 1 && y != 1 && y != n - 1){
y = y * y % n;
t <<= 1;
}
if(y != n - 1 && t % 2 == 0){
return false;
}
}
return true;
}
template<int n>
constexpr bool is_prime = is_prime_constexpr(n);
constexpr int primitive_root_constexpr(int m){
if(m == 2) return 1;
if(m == 167772161) return 3;
if(m == 469762049) return 3;
if(m == 754974721) return 11;
if(m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for(int i = 3; (long long)(i)*i <= x; i += 2){
if(x % i == 0){
divs[cnt++] = i;
while(x % i == 0){
x /= i;
}
}
}
if(x > 1) divs[cnt++] = x;
for(int g = 2;; g++){
bool ok = true;
for(int i = 0; i < cnt; i++){
if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1){
ok = false;
break;
}
}
if(ok)return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
int ceil_pow2(int n){
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n){
return __builtin_ctz(n);
}
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b){
a = safe_mod(a, b);
if(a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t){
long long u = s / t;
s -= t * u;
m0 -= m1 * u;
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if(m0 < 0) m0 += b / s;
return {s, m0};
}
#line 13 ".lib/math/mod.hpp"
template<int m>
long long modpow(long long a, long long b){
assert(0 <= b);
assert(0 < m);
a = safe_mod(a, m);
long long ret = 1;
while(b){
if(b & 1) ret = (ret * a) % m;
a = (a * a) % m;
b >>= 1;
}
return ret;
}
// @param 0 <= b, 0 < m
long long modpow(long long a, long long b, int m){
assert(0 <= b);
assert(0 < m);
a = safe_mod(a, m);
long long ret = 1;
while(b){
if(b & 1) ret = (ret * a) % m;
a = (a * a) % m;
b >>= 1;
}
return ret;
}
struct modint_base {};
struct static_modint_base : modint_base {};
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : static_modint_base{
using mint = static_modint;
public:
static constexpr int mod(){return m;}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint(): _v(0){}
template <class T>
static_modint(T v){
long long x = v % (long long)umod();
if (x < 0) x += umod();
_v = x;
}
unsigned int val()const{return _v;}
mint& operator++(){
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--(){
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int){
mint result = *this;
++*this;
return result;
}
mint operator--(int){
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs){
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs){
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs){
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();}
mint operator+()const{return *this;}
mint operator-()const{return mint() - *this;}
mint pow(long long n)const{
assert(0 <= n);
mint x = *this, r = 1;
while(n){
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv()const{
if(prime){
assert(_v);
return pow(umod() - 2);
}else{
auto eg = inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;}
friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;}
friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;}
friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;}
friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;}
friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;}
private:
unsigned int _v;
static constexpr unsigned int umod(){return m;}
static constexpr bool prime = is_prime<m>;
};
template<int id>
struct dynamic_modint : modint_base{
using mint = dynamic_modint;
public:
static int mod(){return (int)(bt.umod());}
static void set_mod(int m){
assert(1 <= m);
bt = barrett(m);
}
static mint raw(int v){
mint x;
x._v = v;
return x;
}
dynamic_modint(): _v(0){}
template <class T>
dynamic_modint(T v){
long long x = v % (long long)(mod());
if (x < 0) x += mod();
_v = x;
}
unsigned int val()const{return _v;}
mint& operator++(){
_v++;
if(_v == umod()) _v = 0;
return *this;
}
mint& operator--(){
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int){
mint result = *this;
++*this;
return result;
}
mint operator--(int){
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs){
_v += rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs){
_v += mod() - rhs._v;
if(_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs){
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();}
mint operator+()const{return *this;}
mint operator-()const{return mint() - *this;}
mint pow(long long n)const{
assert(0 <= n);
mint x = *this, r = 1;
while(n){
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv()const{
auto eg = inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;}
friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;}
friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;}
friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;}
friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;}
friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;}
private:
unsigned int _v;
static barrett bt;
static unsigned int umod(){return bt.umod();}
};
template <int id>
barrett dynamic_modint<id>::bt(998244353);
using modint = dynamic_modint<-1>;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
template <class T>
using is_static_modint = std::is_base_of<static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
template<int m>
std::ostream &operator<<(std::ostream &dest, const static_modint<m> &a){
dest << a.val();
return dest;
}
template<int id>
std::ostream &operator<<(std::ostream &dest, const dynamic_modint<id> &a){
dest << a.val();
return dest;
}
// 0 <= n < m <= int_max
// 前処理 O(n + log(m))
// 各種計算 O(1)
// 変数 <= n
template<typename mint, is_modint<mint>* = nullptr>
struct modcomb{
private:
int n;
std::vector<mint> f, i, fi;
void init(int _n){
assert(0 <= _n && _n < mint::mod());
if(_n < f.size()) return;
n = _n;
f.resize(n + 1), i.resize(n + 1), fi.resize(n + 1);
f[0] = fi[0] = mint(1);
if(n) f[1] = fi[1] = i[1] = mint(1);
for(int j = 2; j <= n; j++) f[j] = f[j - 1] * j;
fi[n] = f[n].inv();
for(int j = n; j >= 2; j--){
fi[j - 1] = fi[j] * j;
i[j] = f[j - 1] * fi[j];
}
}
public:
modcomb(): n(-1){}
modcomb(int _n){
init(_n);
}
void recalc(int _n){
init(std::min(mint::mod() - 1, 1 << ceil_pow2(_n)));
}
mint comb(int a, int b){
if((a < 0) || (b < 0) || (a < b)) return 0;
return f[a] * fi[a - b] * fi[b];
}
mint perm(int a, int b){
if((a < 0) || (b < 0) || (a < b)) return 0;
return f[a] * fi[a - b];
}
mint fac(int x){
assert(0 <= x && x <= n);
return f[x];
}
mint inv(int x){
assert(0 < x && x <= n);
return i[x];
}
mint finv(int x){
assert(0 <= x && x <= n);
return fi[x];
}
};
template<typename mint, is_modint<mint>* = nullptr>
struct modpow_table{
std::vector<mint> v;
// x^maxkまで計算できる
modpow_table(){}
void init(int x, int maxk){
v.resize(maxk + 1);
v[0] = 1;
for(int i = 1; i <= maxk; i++) v[i] = v[i - 1] * x;
}
mint pow(int k){
assert(0 <= k && k < v.size());
return v[k];
}
};
#line 1 ".lib/data_structure/range_query/pseudo_tree.hpp"
#line 6 ".lib/data_structure/range_query/pseudo_tree.hpp"
// 0-indexedのセグメントツリーを模した木
template<typename Idx = int>
struct pseudo_segment_tree{
static constexpr int bitlen = sizeof(Idx) * 8;
Idx N, M;
pseudo_segment_tree(){}
pseudo_segment_tree(Idx n): N(n){
M = 1;
while(M < N) M <<= 1;
}
// aの深さ
int depth(Idx a){
if(bitlen <= 32) return 31 - __builtin_clz(a + 1);
return 63 - __builtin_clzll(a + 1);
}
// aが表す区間の幅
Idx width(Idx a){
return M >> depth(a);
}
// aが葉か
bool is_leaf(Idx a){
return M - 1 <= a;
}
// a, bの最短距離
Idx dist(Idx a, Idx b){
return depth(a) + depth(b) - 2 * depth(lca(a, b));
}
// aのk個親, 深さを超える場合は-1
Idx la(Idx a, int k){
if(depth(a) < k) return -1;
return ((a + 1) >> k) - 1;
}
// lca
Idx lca(Idx a, Idx b){
a++, b++;
int da = depth(a), db = depth(b);
if(da > db) std::swap(a, b), std::swap(da, db);
b >>= (db - da);
if(a == b) return a - 1;
int msb_diff = (bitlen <= 32 ? 31 - __builtin_clz(a ^ b) : 63 - __builtin_clzll(a ^ b)) + 1;
return (a >> msb_diff) - 1;
}
// aが対応する区間
std::pair<Idx, Idx> index_to_range(Idx a){
assert(0 <= a && a < 2 * M - 1);
int dep = depth(a);
Idx offset = (a + 1) - ((Idx)1 << dep), wid = M >> dep;
return std::make_pair(offset * wid, (offset + 1) * wid);
}
// 区間[l, r)に対応するノード番号(左が先)
std::vector<Idx> range_to_index(Idx l, Idx r){
l = std::max(l, 0), r = std::min(r, N);
assert(l <= r);
l += M, r += M;
std::vector<Idx> left, right;
while(l < r){
if(l & 1) left.push_back((l++) - 1);
if(r & 1) right.push_back((--r) - 1);
l >>= 1;
r >>= 1;
}
std::reverse(right.begin(), right.end());
left.insert(left.end(), right.begin(), right.end());
return left;
}
// 葉a( < N) から根まで辿るときのノード番号(底が先)
std::vector<Idx> leaf_to_root(Idx a){
assert(0 <= a && a < N);
a += M - 1;
std::vector<Idx> ret{a};
while(a){
a = (a - 1) >> 1;
ret.push_back(a);
}
return ret;
}
};
// 0-indexedのk分木を模した木
// 頂点iから ki + 1, ki + 2....ki + kに辺が伸びている(nを超える場合はなし)
// (= 頂点iから (i - 1) / kに辺が伸びている(0からはなし))
template<typename Idx, int k>
struct pseudo_k_ary_tree{
static constexpr int bitlen = sizeof(Idx) * 8;
Idx N, M;
std::vector<Idx> Lelem; // 各深さの最左ノード
std::vector<Idx> kpow;
pseudo_k_ary_tree(){}
pseudo_k_ary_tree(Idx n): N(n){
assert(n);
M = 1;
Lelem.push_back(0);
while(M < N){
Lelem.push_back(M);
// Mは最大でNK程度になり, N, kが大きいとMがオーバーフローする可能性がある
assert((std::numeric_limits<Idx>::max() - 1) / k >= M);
M = (M * k + 1);
}
Idx p = 1;
for(int i = 0; i < Lelem.size(); i++){
kpow.push_back(p);
p *= k;
}
}
int height(){
return Lelem.size();
}
// aの深さ
int depth(Idx a){
int ret = 0;
while(a){
a = (a - 1) / k;
ret++;
}
return ret;
}
// {aの深さ, aと同じ深さのノードでaより小さいものの数}
std::pair<int, Idx> index_sibling(Idx a){
int d = depth(a);
return {d, a - Lelem[d]};
}
// 深さが最も深いノードの数
Idx num_deepest(){
return N - Lelem.back();
}
// 葉の数
Idx num_leaf(){
Idx nd = num_deepest();
Idx ALLLEAF = M - Lelem.back();
return nd + (ALLLEAF - nd) / k;
}
// aの部分木に含まれる最も深いノードの数
Idx num_subdeepest(Idx a){
auto [d, si] = index_sibling(a);
int hdiff = (int)Lelem.size() - d;
// 完全k分木ならk ^ (h - 1 - d)個の葉がある
return std::max(Idx(0), num_deepest() - si * kpow[hdiff - 1]);
}
// aの部分木に含まれる葉の数
Idx num_subleaf(Idx a){
auto [d, si] = index_sibling(a);
int hdiff = (int)Lelem.size() - d;
// 完全k分木ならk ^ (h - 1 - d)個の葉がある
Idx subdeep = std::max(Idx(0), num_deepest() - si * kpow[hdiff - 1]);
return subdeep + (kpow[hdiff - 1] - subdeep) / k;
}
// aの部分木のサイズ
Idx num_subtree(Idx a){
auto [d, si] = index_sibling(a);
int hdiff = (int)Lelem.size() - d;
// 完全k分木ならk ^ (h - 1 - d)個の葉がある
Idx subdeep = std::max(Idx(0), num_deepest() - si * kpow[hdiff - 1]);
return Lelem[hdiff - 1] + subdeep;
}
// aが葉か
bool is_leaf(Idx a){
return Lelem.back() <= a;
}
Idx dist(Idx a, Idx b){
return dist2(a, b).second;
}
// a, bの{lca, 最短距離}
std::pair<Idx, Idx> dist2(Idx a, Idx b){
Idx d = 0;
while(a != b){
if(a < b) std::swap(a, b);
a = (a - 1) / k;
d++;
}
return {a, d};
}
// 親, ない場合は-1
Idx parent(Idx a){
return a ? (a - 1) / k : -1;
}
// aのt個親, 深さを超える場合は-1
Idx la(Idx a, int t){
for(int i = 0; i < t; i++){
if(!a) return -1;
a = (a - 1) / k;
}
return a;
}
// lca
Idx lca(Idx a, Idx b){
return dist2(a, b).first;
}
// {ノードの深さ, その部分木の深さh-1のノードがいくつ欠けているか}でノードを分類すると, その種類数は高々3h
// {個数, ノードの深さ, 深さh-1のノードがいくつ欠けているか}を返す
std::vector<std::tuple<Idx, Idx, Idx>> depth_frequency_decompose(){
std::vector<std::tuple<Idx, Idx, Idx>> ret;
Idx x = N - 1, nd = 1;
int h = (int)Lelem.size();
for(int d = h - 1; d >= 0; d--){
Idx L = x - Lelem[d], R = kpow[d] - 1 - L;
if(L) ret.push_back({L, d, 0});
if(R) ret.push_back({R, d, kpow[h - 1 - d]});
ret.push_back({1, d, kpow[h - 1 - d] - nd});
if(d){
x--;
nd += kpow[h - 1 - d] * (x % k);
x /= k;
}
}
return ret;
}
// aの部分木の頻度テーブル(ans[i] := aの部分木に含まれaとの距離がiのノード数)
std::vector<Idx> depth_frequency(Idx a){
if(a >= N) return {};
std::vector<Idx> ret;
int t = 0;
while(a < M){
if(N <= a){
ret.push_back(std::max(Idx(0), kpow[t++] - (a - N + 1)));
return ret;
}else{
ret.push_back(kpow[t++]);
}
a = a * k + k;
}
return ret;
}
// aの部分木の頂点でaとの距離がdの頂点の数
Idx count_dist_subtree(Idx a, int d){
if(d < 0 || a >= N) return 0;
int da = depth(a);
return __count_dist_subtree(a, da, d);
}
Idx __count_dist_subtree(Idx a, int da, int d){
if(d < 0 || a >= N) return 0;
int h = Lelem.size();
if(da + d >= h) return 0;
if(da + d < h - 1){
return kpow[d];
}else{
Idx ldeep = (a - Lelem[da]) * kpow[d];
return std::min(kpow[d], std::max(Idx(0), num_deepest() - ldeep));
}
}
// aとの距離がdの頂点の数
Idx count_dist(Idx a, int d){
if(d < 0 || a >= N) return 0;
Idx ans = 0;
int da = depth(a);
while(d >= 0){
ans += __count_dist_subtree(a, da, d);
if(!a) return ans;
ans -= __count_dist_subtree(a, da, d - 2);
d--, da--;
a = (a - 1) / k;
}
return ans;
}
};
#line 4 "a.cpp"
using mint = modint1000000007;
int main(){
io_init();
int d, l, r, k;
std::cin >> d >> l >> r >> k;
l--, r--;
pseudo_k_ary_tree<int, 2> t((1 << d) - 1);
int d1 = t.depth(l), d2 = t.depth(r);
if(d1 > d2){
std::swap(l, r);
std::swap(d1, d2);
}
int diff_d = k - (d2 - d1);
int d3 = d1 - diff_d / 2;
if(diff_d % 2 == 1 || d1 + k < d2 || d3 < 0){
std::cout << 0 << '\n';
return 0;
}
mint base = 1;
modcomb<mint> mcb(1 << d);
range(i, 0, t.height()){
int dnum = t.count_dist_subtree(0, i);
if(i == d1) dnum--;
if(i == d2) dnum--;
assert(dnum >= 0);
base *= mcb.fac(dnum);
}
mint ans = 0;
d1 -= d3, d2 -= d3;
assert(d2 > 0);
int ri = (d3 == t.height() - 1 ? (1 << d) : t.Lelem[d3 + 1]);
for(int i = t.Lelem[d3]; i < ri; i++){
if(d1 == 0){
ans += t.__count_dist_subtree(i, d3, d2);
}else{
ans += (mint)t.__count_dist_subtree(i * 2 + 1, d3 + 1, d1 - 1) * t.__count_dist_subtree(i * 2 + 2, d3 + 1, d2 - 1);
ans += (mint)t.__count_dist_subtree(i * 2 + 1, d3 + 1, d2 - 1) * t.__count_dist_subtree(i * 2 + 2, d3 + 1, d1 - 1);
}
}
std::cout << ans * base << '\n';
}
tonegawa