結果
| 問題 |
No.2231 Surprising Flash!
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-09-27 14:09:29 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 18,154 bytes |
| コンパイル時間 | 216 ms |
| コンパイル使用メモリ | 82,304 KB |
| 実行使用メモリ | 272,360 KB |
| 最終ジャッジ日時 | 2024-07-20 08:13:27 |
| 合計ジャッジ時間 | 43,171 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 43 TLE * 1 |
ソースコード
mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)
N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル
for i in range( 2, N + 1 ):
g1[i]=( ( g1[i-1] * i ) % mod )
inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0
def _ntt(f,L,reverse=False):
F=[f[i] for i in range(L)]
n = L.bit_length() - 1
base = omega
if reverse:
base = rev_omega
if not n:
return F
size = 2**n
wj = pow(base,2**22,mod)
res = [0]*2**n
for i in range(n,0,-1):
use_omega = pow(base,2**(22+i-n),mod)
res = [0]*2**n
size //= 2
w = 1
for j in range(0,L//2,size):
for a in range(size):
res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod
t = (w * wj) % mod
res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod
w = (w * use_omega) % mod
F = res
return res
def ntt(f,L=0):
l = len(f)
if not L:
L = 1<<((l-1).bit_length())
while len(f)<L:
f.append(0)
f=f[:L]
F = _ntt(f,L)
return F
def intt(f,L=0):
l = len(f)
if not L:
L = 1<<((l-1).bit_length())
while len(f)<L:
f.append(0)
f=f[:L]
F = _ntt(f,L,reverse=True)
inv = pow(L,mod-2,mod)
for i in range(L):
F[i] *= inv
F[i] %= mod
return F
def convolve(_f,_g,limit):
f = [v for v in _f]
g = [v for v in _g]
l = len(f)+len(g)-1
L = 1<<((l-1).bit_length())
F = ntt(f,L)
G = ntt(g,L)
H = [(F[i] * G[i]) % mod for i in range(L)]
h = intt(H,L)
return h[:limit]
mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)
N = 2*10**5
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル
for i in range( 2, N + 1 ):
g1[i]=( ( g1[i-1] * i ) % mod )
inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0
_fft_mod = 998244353
_fft_imag = 911660635
_fft_iimag = 86583718
_fft_rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
_fft_irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
_fft_rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
_fft_irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)
def _butterfly(a):
n = len(a)
h = (n - 1).bit_length()
len_ = 0
while len_ < h:
if h - len_ == 1:
p = 1 << (h - len_ - 1)
rot = 1
for s in range(1 << len_):
offset = s << (h - len_)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p] * rot % _fft_mod
a[i + offset] = (l + r) % _fft_mod
a[i + offset + p] = (l - r) % _fft_mod
if s + 1 != (1 << len_):
rot *= _fft_rate2[(~s & -~s).bit_length() - 1]
rot %= _fft_mod
len_ += 1
else:
p = 1 << (h - len_ - 2)
rot = 1
for s in range(1 << len_):
rot2 = rot * rot % _fft_mod
rot3 = rot2 * rot % _fft_mod
offset = s << (h - len_)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p] * rot
a2 = a[i + offset + p * 2] * rot2
a3 = a[i + offset + p * 3] * rot3
a1na3imag = (a1 - a3) % _fft_mod * _fft_imag
a[i + offset] = (a0 + a2 + a1 + a3) % _fft_mod
a[i + offset + p] = (a0 + a2 - a1 - a3) % _fft_mod
a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % _fft_mod
a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % _fft_mod
if s + 1 != (1 << len_):
rot *= _fft_rate3[(~s & -~s).bit_length() - 1]
rot %= _fft_mod
len_ += 2
def _butterfly_inv(a):
n = len(a)
h = (n - 1).bit_length()
len_ = h
while len_:
if len_ == 1:
p = 1 << (h - len_)
irot = 1
for s in range(1 << (len_ - 1)):
offset = s << (h - len_ + 1)
for i in range(p):
l = a[i + offset]
r = a[i + offset + p]
a[i + offset] = (l + r) % _fft_mod
a[i + offset + p] = (l - r) * irot % _fft_mod
if s + 1 != (1 << (len_ - 1)):
irot *= _fft_irate2[(~s & -~s).bit_length() - 1]
irot %= _fft_mod
len_ -= 1
else:
p = 1 << (h - len_)
irot = 1
for s in range(1 << (len_ - 2)):
irot2 = irot * irot % _fft_mod
irot3 = irot2 * irot % _fft_mod
offset = s << (h - len_ + 2)
for i in range(p):
a0 = a[i + offset]
a1 = a[i + offset + p]
a2 = a[i + offset + p * 2]
a3 = a[i + offset + p * 3]
a2na3iimag = (a2 - a3) * _fft_iimag % _fft_mod
a[i + offset] = (a0 + a1 + a2 + a3) % _fft_mod
a[i + offset + p] = (a0 - a1 +
a2na3iimag) * irot % _fft_mod
a[i + offset + p * 2] = (a0 + a1 -
a2 - a3) * irot2 % _fft_mod
a[i + offset + p * 3] = (a0 - a1 -
a2na3iimag) * irot3 % _fft_mod
if s + 1 != (1 << (len_ - 1)):
irot *= _fft_irate3[(~s & -~s).bit_length() - 1]
irot %= _fft_mod
len_ -= 2
def _convolution_naive(a, b):
n = len(a)
m = len(b)
ans = [0] * (n + m - 1)
if n < m:
for j in range(m):
for i in range(n):
ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
else:
for i in range(n):
for j in range(m):
ans[i + j] = (ans[i + j] + a[i] * b[j]) % _fft_mod
return ans
def _convolution_fft(a, b):
a = a.copy()
b = b.copy()
n = len(a)
m = len(b)
z = 1 << (n + m - 2).bit_length()
a += [0] * (z - n)
_butterfly(a)
b += [0] * (z - m)
_butterfly(b)
for i in range(z):
a[i] = a[i] * b[i] % _fft_mod
_butterfly_inv(a)
a = a[:n + m - 1]
iz = pow(z, _fft_mod - 2, _fft_mod)
for i in range(n + m - 1):
a[i] = a[i] * iz % _fft_mod
return a
def _convolution_square(a):
a = a.copy()
n = len(a)
z = 1 << (2 * n - 2).bit_length()
a += [0] * (z - n)
_butterfly(a)
for i in range(z):
a[i] = a[i] * a[i] % _fft_mod
_butterfly_inv(a)
a = a[:2 * n - 1]
iz = pow(z, _fft_mod - 2, _fft_mod)
for i in range(2 * n - 1):
a[i] = a[i] * iz % _fft_mod
return a
def convolution(a, b):
"""It calculates (+, x) convolution in mod 998244353.
Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1],
it calculates the array c of length n + m - 1, defined by
> c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.
It returns an empty list if at least one of a and b are empty.
Constraints
-----------
> len(a) + len(b) <= 8388609
Complexity
----------
> O(n log n), where n = len(a) + len(b).
"""
n = len(a)
m = len(b)
if n == 0 or m == 0:
return []
if min(n, m) <= 15:
return _convolution_naive(a, b)
if a is b:
return _convolution_square(a)
return _convolution_fft(a, b)
import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import gcd,log
input = lambda :sys.stdin.readline().rstrip()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
def Z_algorithm(s):
N = len(s)
Z_alg = [0]*N
Z_alg[0] = N
i = 1
j = 0
while i < N:
while i+j < N and s[j] == s[i+j]:
j += 1
Z_alg[i] = j
if j == 0:
i += 1
continue
k = 1
while i+k < N and k + Z_alg[k]<j:
Z_alg[i+k] = Z_alg[k]
k += 1
i += k
j -= k
return Z_alg
import copy
import functools
import typing
def _sa_naive(s: typing.List[int]) -> typing.List[int]:
sa = list(range(len(s)))
return sorted(sa, key=lambda i: s[i:])
def _sa_doubling(s: typing.List[int]) -> typing.List[int]:
n = len(s)
sa = list(range(n))
rnk = copy.deepcopy(s)
tmp = [0] * n
k = 1
while k < n:
def cmp(x: int, y: int) -> bool:
if rnk[x] != rnk[y]:
return rnk[x] - rnk[y]
rx = rnk[x + k] if x + k < n else -1
ry = rnk[y + k] if y + k < n else -1
return rx - ry
sa.sort(key=functools.cmp_to_key(cmp))
tmp[sa[0]] = 0
for i in range(1, n):
tmp[sa[i]] = tmp[sa[i - 1]] + (1 if cmp(sa[i - 1], sa[i]) else 0)
tmp, rnk = rnk, tmp
k *= 2
return sa
def _sa_is(s: typing.List[int], upper: int) -> typing.List[int]:
'''
SA-IS, linear-time suffix array construction
Reference:
G. Nong, S. Zhang, and W. H. Chan,
Two Efficient Algorithms for Linear Time Suffix Array Construction
'''
threshold_naive = 10
threshold_doubling = 40
n = len(s)
if n == 0:
return []
if n == 1:
return [0]
if n == 2:
if s[0] < s[1]:
return [0, 1]
else:
return [1, 0]
if n < threshold_naive:
return _sa_naive(s)
if n < threshold_doubling:
return _sa_doubling(s)
sa = [0] * n
ls = [False] * n
for i in range(n - 2, -1, -1):
if s[i] == s[i + 1]:
ls[i] = ls[i + 1]
else:
ls[i] = s[i] < s[i + 1]
sum_l = [0] * (upper + 1)
sum_s = [0] * (upper + 1)
for i in range(n):
if not ls[i]:
sum_s[s[i]] += 1
else:
sum_l[s[i] + 1] += 1
for i in range(upper + 1):
sum_s[i] += sum_l[i]
if i < upper:
sum_l[i + 1] += sum_s[i]
def induce(lms: typing.List[int]) -> None:
nonlocal sa
sa = [-1] * n
buf = copy.deepcopy(sum_s)
for d in lms:
if d == n:
continue
sa[buf[s[d]]] = d
buf[s[d]] += 1
buf = copy.deepcopy(sum_l)
sa[buf[s[n - 1]]] = n - 1
buf[s[n - 1]] += 1
for i in range(n):
v = sa[i]
if v >= 1 and not ls[v - 1]:
sa[buf[s[v - 1]]] = v - 1
buf[s[v - 1]] += 1
buf = copy.deepcopy(sum_l)
for i in range(n - 1, -1, -1):
v = sa[i]
if v >= 1 and ls[v - 1]:
buf[s[v - 1] + 1] -= 1
sa[buf[s[v - 1] + 1]] = v - 1
lms_map = [-1] * (n + 1)
m = 0
for i in range(1, n):
if not ls[i - 1] and ls[i]:
lms_map[i] = m
m += 1
lms = []
for i in range(1, n):
if not ls[i - 1] and ls[i]:
lms.append(i)
induce(lms)
if m:
sorted_lms = []
for v in sa:
if lms_map[v] != -1:
sorted_lms.append(v)
rec_s = [0] * m
rec_upper = 0
rec_s[lms_map[sorted_lms[0]]] = 0
for i in range(1, m):
left = sorted_lms[i - 1]
right = sorted_lms[i]
if lms_map[left] + 1 < m:
end_l = lms[lms_map[left] + 1]
else:
end_l = n
if lms_map[right] + 1 < m:
end_r = lms[lms_map[right] + 1]
else:
end_r = n
same = True
if end_l - left != end_r - right:
same = False
else:
while left < end_l:
if s[left] != s[right]:
break
left += 1
right += 1
if left == n or s[left] != s[right]:
same = False
if not same:
rec_upper += 1
rec_s[lms_map[sorted_lms[i]]] = rec_upper
rec_sa = _sa_is(rec_s, rec_upper)
for i in range(m):
sorted_lms[i] = lms[rec_sa[i]]
induce(sorted_lms)
return sa
def suffix_array(s: typing.Union[str, typing.List[int]],
upper: typing.Optional[int] = None) -> typing.List[int]:
if isinstance(s, str):
return _sa_is([ord(c) for c in s], 255)
elif upper is None:
n = len(s)
idx = list(range(n))
idx.sort(key=functools.cmp_to_key(lambda l, r: s[l] - s[r]))
s2 = [0] * n
now = 0
for i in range(n):
if i and s[idx[i - 1]] != s[idx[i]]:
now += 1
s2[idx[i]] = now
return _sa_is(s2, now)
else:
assert 0 <= upper
for d in s:
assert 0 <= d <= upper
return _sa_is(s, upper)
def lcp_array(s: typing.Union[str, typing.List[int]],
sa: typing.List[int]) -> typing.List[int]:
'''
Reference:
T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
Applications
'''
if isinstance(s, str):
s = [ord(c) for c in s]
n = len(s)
assert n >= 1
rnk = [0] * n
for i in range(n):
rnk[sa[i]] = i
lcp = [0] * (n - 1)
h = 0
for i in range(n):
if h > 0:
h -= 1
if rnk[i] == 0:
continue
j = sa[rnk[i] - 1]
while j + h < n and i + h < n:
if s[j + h] != s[i + h]:
break
h += 1
lcp[rnk[i] - 1] = h
return lcp
def solve(N,M,S,T):
Sa = S.replace("?","a")
SaT = T + "#" + Sa
check = Z_algorithm(SaT)
for i in range(N):
if check[i+M+1] == M:
return Sa
SaT_suffix = Sa + "#" + T
X = suffix_array(SaT_suffix)
pos = [-1] * (N+M+1)
for i in range(N+M+1):
pos[X[i]] = i
"""
Sの?を置き換える際は
・かならず?->a以外にするとこがある(->?を置き換える部分がある)
S[i:i+M] と S[j:j+M] (i < j) の置き換えを比較するとき、
i+M < j のとき、jが小さい
T[:j-i]とSa[i:j] の比較
T[j-i:M] と T[:i+M-j] の比較
Sa[i+M:j+M] と T[i+M-j:M] の比較
これで決着がつかない場合、iが小さい
"""
wild_cnt = [0] + [S[i]=="?" for i in range(N)]
for i in range(N):
wild_cnt[i+1] += wild_cnt[i]
T_Z = Z_algorithm(T)
def compare(i,j):
if i+M <= j:
return j
#print(i,j,check,SaT,check[i+M+1],Sa[check[i+M+1]])
if check[i+M+1] < j-i:
if T[check[i+M+1]] < Sa[i+check[i+M+1]]:
return i
else:
return j
if T_Z[j-i] < M+i-j:
if T[j-i+T_Z[j-i]] > T[T_Z[j-i]]:
return j
else:
return i
if pos[i+M] < pos[N+1+i+M-j]:
return i
else:
return j
hash = [k+1 for k in range(26)]
f = [0] * N
for i in range(N):
if S[i]!="?":
f[i] = hash[ord(S[i])-ord("a")]
g = [0] * M
for i in range(M):
if T[i]!="?":
g[i] = hash[ord(T[i])-ord("a")]
p = convolution([f[i]**3 % mod for i in range(N)],g[::-1])
q = convolution([f[i]**2 % mod for i in range(N)],[g[i]**2 % mod for i in range(M)][::-1])
r = convolution([f[i] % mod for i in range(N)],[g[i]**3 % mod for i in range(M)][::-1])
cand = []
for i in range(N-M+1):
if (p[i+M-1]-2*q[i+M-1]+r[i+M-1]) % mod == 0:
cand.append(i)
#print(cand)
if not cand:
return -1
k = cand[0]
for i in cand[1:]:
k = compare(k,i)
res = "".join([S[:k].replace("?","a") , T , S[k+M:].replace("?","a")])
return res
def brute(N,M,S,T):
res = "z" * (N+1)
for i in range(N-M+1):
flag = True
for j in range(M):
if S[i+j]!="?" and S[i+j]!=T[j]:
flag = False
if flag:
tmp = S[:i].replace("?","a") + T + S[i+M:].replace("?","a")
res = min(res,tmp)
if len(res) == N + 1:
return -1
else:
return res
while False:
N = random.randint(2,20)
M = random.randint(1,N)
S = "".join([random.choice("abc?") for i in range(N)])
T = "".join([random.choice("abc") for i in range(M)])
if solve(N,M,S,T)!=brute(N,M,S,T):
print(N,M)
print(S)
print(T)
print(solve(N,M,S,T),brute(N,M,S,T))
break
else:
print("AC")
for _ in range(int(input())):
N,M = mi()
S = input()
T = input()
print(solve(N,M,S,T))