結果

問題 No.235 めぐるはめぐる (5)
ユーザー miyo2580miyo2580
提出日時 2023-09-29 17:35:13
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,789 ms / 10,000 ms
コード長 13,192 bytes
コンパイル時間 2,010 ms
コンパイル使用メモリ 190,912 KB
実行使用メモリ 53,568 KB
最終ジャッジ日時 2024-07-22 11:37:06
合計ジャッジ時間 9,184 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,789 ms
52,724 KB
testcase_01 AC 1,122 ms
53,568 KB
testcase_02 AC 1,654 ms
53,140 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define repd(i,a,b) for (ll i=(a);i<(b);i++)
#define rep(i,n) repd(i,0,n)
#define all(x) (x).begin(),(x).end()
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }
typedef long long ll;
typedef pair<ll,ll> P;
typedef vector<ll> vec;
using Graph = vector<vector<ll>>;
const long long INF = 1LL<<60;
const long long MOD = 1000000007;

#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

#if __cplusplus >= 202002L
#include <bit>
#endif

namespace atcoder {

namespace internal {

#if __cplusplus >= 202002L

using std::bit_ceil;

#else

// @return same with std::bit::bit_ceil
unsigned int bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
}

#endif

// @param n `1 <= n`
// @return same with std::bit::countr_zero
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

// @param n `1 <= n`
// @return same with std::bit::countr_zero
constexpr int countr_zero_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_BITOP_HPP

#ifndef ATCODER_LAZYSEGTREE_HPP
#define ATCODER_LAZYSEGTREE_HPP 1

#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>

namespace atcoder {

#if __cplusplus >= 201703L

template <class S,
          auto op,
          auto e,
          class F,
          auto mapping,
          auto composition,
          auto id>
struct lazy_segtree {
    static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
                  "op must work as S(S, S)");
    static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,
                  "e must work as S()");
    static_assert(
        std::is_convertible_v<decltype(mapping), std::function<S(F, S)>>,
        "mapping must work as F(F, S)");
    static_assert(
        std::is_convertible_v<decltype(composition), std::function<F(F, F)>>,
        "compostiion must work as F(F, F)");
    static_assert(std::is_convertible_v<decltype(id), std::function<F()>>,
                  "id must work as F()");

#else

template <class S,
          S (*op)(S, S),
          S (*e)(),
          class F,
          S (*mapping)(F, S),
          F (*composition)(F, F),
          F (*id)()>
struct lazy_segtree {

#endif

  public:
    lazy_segtree() : lazy_segtree(0) {}
    explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
    explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        size = (int)internal::bit_ceil((unsigned int)(_n));
        log = internal::countr_zero((unsigned int)size);
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    std::vector<F> lz;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

}  // namespace atcoder

#endif  // ATCODER_LAZYSEGTREE_HPP

using namespace atcoder;

// auto mod int
// https://youtu.be/L8grWxBlIZ4?t=9858
// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize
// https://youtu.be/8uowVvQ_-Mo?t=1329 : division
const int mod = 1000000007;
struct mint {
  ll x; // typedef long long ll;
  mint(ll x=0):x((x%mod+mod)%mod){}
  mint operator-() const { return mint(-x);}
  mint& operator+=(const mint a) {
    if ((x += a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator-=(const mint a) {
    if ((x += mod-a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
  mint operator+(const mint a) const { return mint(*this) += a;}
  mint operator-(const mint a) const { return mint(*this) -= a;}
  mint operator*(const mint a) const { return mint(*this) *= a;}
  mint pow(ll t) const {
    if (!t) return 1;
    mint a = pow(t>>1);
    a *= a;
    if (t&1) a *= *this;
    return a;
  }

  // for prime mod
  mint inv() const { return pow(mod-2);}
  mint& operator/=(const mint a) { return *this *= a.inv();}
  mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}

struct S{
    mint value;
    mint size;
};
using F = ll;

const F ID = 0;

S op(S a, S b){ return {a.value+b.value, a.size+b.size}; }
S e(){ return {0, 0}; }
S mapping(F f, S x){
    x.value += x.size*f;
    return x;
}
F composition(F f, F g){ return  f+g; }
F id(){ return ID; }

/* LCA(G, root): 木 G に対する根を root として Lowest Common Ancestor を求める構造体
    query(u,v): u と v の LCA を求める。計算量 O(logn)
    前処理: O(nlogn)時間, O(nlogn)空間
*/
struct LCA {
    vector<vector<int>> parent;  // parent[k][u]:= u の 2^k 先の親
    vector<int> dist;            // root からの距離
    LCA(const Graph& G, int root) { init(G, root); }

    // 初期化
    void init(const Graph& G, int root) {
        int V = G.size();
        int K = 1;
        while ((1 << K) < V) K++; //KはK>=log2(V)を満たす最小の整数
        parent.assign(K, vector<int>(V, -1));
        dist.assign(V, -1);
        dfs(G, root, -1, 0);
        for (int k = 0; k + 1 < K; k++) {
            for (int v = 0; v < V; v++) {
                if (parent[k][v] < 0) {
                    parent[k + 1][v] = -1;
                }
                else {
                    parent[k + 1][v] = parent[k][parent[k][v]];
                }
            }
        }
    }

    // 根からの距離と1つ先の頂点を求める
    void dfs(const Graph& G, int v, int p, int d) {
        parent[0][v] = p;
        dist[v] = d;
        for (auto e : G[v]) {
            if (e!= p) dfs(G, e, v, d + 1);
        }
    }

    int query(int u, int v) {
        if (dist[u] < dist[v]) swap(u, v);  // u の方が深いとする
        int K = parent.size();
        // LCA までの距離を同じにする
        for (int k = 0; k < K; k++) {
            if ((dist[u] - dist[v]) >> k & 1) {
                u = parent[k][u];
            }
        }
        // 二分探索で LCA を求める
        if (u == v) return u;
        for (int k = K - 1; k >= 0; k--) {
            if (parent[k][u] != parent[k][v]) {
                u = parent[k][u];
                v = parent[k][v];
            }
        }
        return parent[0][u];
    }
};


int main()
{  
    ios::sync_with_stdio(false);
    cin.tie(0);
    ll n;cin>>n;
    vec a(n);
    vec b(n);
    rep(i,n)cin>>a[i];
    rep(i,n)cin>>b[i];
    Graph g(n);
    rep(i,n-1){
        ll a,b;cin>>a>>b;
        a--;b--;
        g[a].push_back(b);
        g[b].push_back(a);
    }
    vec sub(n);
    function<ll(ll,ll)> dfs=[&](ll x,ll p){
        ll res=1;
        for(ll &nx:g[x]){
            if(nx==p)continue;
            res+=dfs(nx,x);
            if(sub[nx]>sub[g[x][0]])swap(g[x][0],nx);
        }
        return sub[x]=res;
    };
    dfs(0,-1);
    vec par(n);
    vec ord(n);
    vec head(n);
    ll idx=0;
    function<void(ll,ll)> efs=[&](ll x,ll p){
        ord[x]=idx++;
        for(ll nx:g[x]){
            if(nx==p)continue;
            par[nx]=x;
            if(nx==g[x][0]){
                head[nx]=head[x];
            }
            else head[nx]=nx;
            efs(nx,x);
        }
    };
    efs(0,-1);
    ll q;cin>>q;
    vector<S> v(n);
    LCA lca(g,0);
    rep(i,n){
        v[ord[i]]={a[i],b[i]};
    }
    lazy_segtree<S,op,e,F,mapping,composition,id> seg(v);
    rep(qi,q){
        ll ty;cin>>ty;
        ll x,y,z;
        if(ty==0){
            cin>>x>>y>>z;
            x--;y--;
            ll lc=lca.query(x,y);
            while(ord[x]>=ord[lc]){
                ll R=ord[x];
                ll L=ord[head[x]];
                chmax(L,ord[lc]);
                seg.apply(L,R+1,z);
                if(L==ord[lc])break;
                x=par[head[x]];
            }
            while(ord[y]>ord[lc]){
                ll R=ord[y];
                ll L=ord[head[y]];
                chmax(L,ord[lc]+1);
                seg.apply(L,R+1,z);
                if(L==ord[lc]+1)break;
                y=par[head[y]];
            }
        }
        else{
            cin>>x>>y;
            x--;y--;
            ll lc=lca.query(x,y);
            mint ans=0;
            while(ord[x]>=ord[lc]){
                ll R=ord[x];
                ll L=ord[head[x]];
                chmax(L,ord[lc]);
                ans+=seg.prod(L,R+1).value;
                if(L==ord[lc])break;
                x=par[head[x]];
            }
            while(ord[y]>ord[lc]){
                ll R=ord[y];
                ll L=ord[head[y]];
                chmax(L,ord[lc]+1);
                ans+=seg.prod(L,R+1).value;
                if(L==ord[lc]+1)break;
                y=par[head[y]];
            }
            cout<<ans<<'\n';
        }
    }
    return 0;
}
0