結果
| 問題 |
No.2487 Multiple of M
|
| ユーザー |
emthrm
|
| 提出日時 | 2023-09-29 22:15:55 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 7,645 bytes |
| コンパイル時間 | 3,146 ms |
| コンパイル使用メモリ | 260,012 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-23 06:53:46 |
| 合計ジャッジ時間 | 4,565 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 53 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <unsigned int M>
struct MInt {
unsigned int v;
constexpr MInt() : v(0) {}
constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr MInt raw(const int x) {
MInt x_;
x_.v = x;
return x_;
}
static constexpr int get_mod() { return M; }
static constexpr void set_mod(const int divisor) {
assert(std::cmp_equal(divisor, M));
}
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * raw(M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
if (const int prev = factorial.size(); n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
if (const int prev = f_inv.size(); n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
constexpr MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
constexpr MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator*=(const MInt& x) {
v = (unsigned long long){v} * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
constexpr auto operator<=>(const MInt& x) const = default;
constexpr MInt& operator++() {
if (++v == M) [[unlikely]] v = 0;
return *this;
}
constexpr MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
constexpr MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
constexpr MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
constexpr MInt operator+() const { return *this; }
constexpr MInt operator-() const { return raw(v ? M - v : 0); }
constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; }
constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
template <typename T>
struct Matrix {
explicit Matrix(const int m, const int n, const T def = 0)
: data(m, std::vector<T>(n, def)) {}
int nrow() const { return data.size(); }
int ncol() const { return data.front().size(); }
Matrix pow(long long exponent) const {
const int n = nrow();
Matrix<T> res(n, n, 0), tmp = *this;
for (int i = 0; i < n; ++i) {
res[i][i] = 1;
}
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
inline const std::vector<T>& operator[](const int i) const { return data[i]; }
inline std::vector<T>& operator[](const int i) { return data[i]; }
Matrix& operator=(const Matrix& x) = default;
Matrix& operator+=(const Matrix& x) {
const int m = nrow(), n = ncol();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
data[i][j] += x[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& x) {
const int m = nrow(), n = ncol();
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
data[i][j] -= x[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& x) {
const int m = nrow(), l = ncol(), n = x.ncol();
std::vector<std::vector<T>> res(m, std::vector<T>(n, 0));
for (int i = 0; i < m; ++i) {
for (int k = 0; k < l; ++k) {
for (int j = 0; j < n; ++j) {
res[i][j] += data[i][k] * x[k][j];
}
}
}
data.swap(res);
return *this;
}
Matrix operator+(const Matrix& x) const { return Matrix(*this) += x; }
Matrix operator-(const Matrix& x) const { return Matrix(*this) -= x; }
Matrix operator*(const Matrix& x) const { return Matrix(*this) *= x; }
private:
std::vector<std::vector<T>> data;
};
ModInt solve(const int n, const int m, const int k, const int md) {
const int g = gcd(md, k);
if (g == 1) {
Matrix<ModInt> matrix(2, 2);
matrix[0][0] = -1; matrix[0][1] = m / md;
matrix[1][1] = m - 1;
matrix = matrix.pow(n - 1);
return matrix[0][0] * (m / md - 1) + matrix[0][1] * (m - 1);
}
if (n == 1) return m / md - 1;
return ModInt(m - 1).pow(n - 1) * m / md - solve(n - 1, m, k, md / g);
}
int main() {
int n, m, k; cin >> n >> m >> k;
k %= m;
if (n == 1 || k == 0) {
cout << 0 << '\n';
return 0;
}
// vector<ModInt> dp(m, 0);
// dp[0] = 1;
// for (int i = n - 1; i >= 0; --i) {
// vector<ModInt> nxt(m, 0);
// REP(x, m) FOR(y, 1, m) nxt[(x * k + y) % m] += dp[x];
// dp.swap(nxt);
// }
// cout << dp[0] << '\n';
cout << solve(n, m, k, m) << '\n';
return 0;
}
emthrm