結果

問題 No.2490 Escalator
ユーザー 👑 hos.lyrichos.lyric
提出日時 2023-09-29 23:15:08
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 384 ms / 5,000 ms
コード長 11,856 bytes
コンパイル時間 1,483 ms
コンパイル使用メモリ 113,772 KB
実行使用メモリ 11,456 KB
最終ジャッジ日時 2024-07-22 18:24:57
合計ジャッジ時間 19,171 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 3 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 10 ms
5,376 KB
testcase_25 AC 10 ms
5,376 KB
testcase_26 AC 10 ms
5,376 KB
testcase_27 AC 10 ms
5,376 KB
testcase_28 AC 10 ms
5,376 KB
testcase_29 AC 10 ms
5,376 KB
testcase_30 AC 10 ms
5,376 KB
testcase_31 AC 10 ms
5,376 KB
testcase_32 AC 11 ms
5,376 KB
testcase_33 AC 10 ms
5,376 KB
testcase_34 AC 373 ms
11,452 KB
testcase_35 AC 371 ms
11,328 KB
testcase_36 AC 369 ms
11,448 KB
testcase_37 AC 371 ms
11,448 KB
testcase_38 AC 372 ms
11,452 KB
testcase_39 AC 372 ms
11,452 KB
testcase_40 AC 372 ms
11,452 KB
testcase_41 AC 371 ms
11,456 KB
testcase_42 AC 371 ms
11,448 KB
testcase_43 AC 369 ms
11,448 KB
testcase_44 AC 384 ms
11,452 KB
testcase_45 AC 372 ms
11,452 KB
testcase_46 AC 369 ms
11,324 KB
testcase_47 AC 372 ms
11,356 KB
testcase_48 AC 369 ms
11,452 KB
testcase_49 AC 368 ms
11,452 KB
testcase_50 AC 371 ms
11,452 KB
testcase_51 AC 367 ms
11,452 KB
testcase_52 AC 369 ms
11,452 KB
testcase_53 AC 374 ms
11,324 KB
testcase_54 AC 365 ms
11,448 KB
testcase_55 AC 370 ms
11,324 KB
testcase_56 AC 367 ms
11,324 KB
testcase_57 AC 367 ms
11,448 KB
testcase_58 AC 370 ms
11,324 KB
testcase_59 AC 368 ms
11,448 KB
testcase_60 AC 369 ms
11,324 KB
testcase_61 AC 367 ms
11,456 KB
testcase_62 AC 367 ms
11,324 KB
testcase_63 AC 368 ms
11,448 KB
testcase_64 AC 367 ms
11,324 KB
testcase_65 AC 368 ms
11,324 KB
testcase_66 AC 370 ms
11,452 KB
testcase_67 AC 368 ms
11,324 KB
testcase_68 AC 371 ms
11,448 KB
testcase_69 AC 368 ms
11,320 KB
testcase_70 AC 370 ms
11,452 KB
testcase_71 AC 370 ms
11,456 KB
testcase_72 AC 370 ms
11,452 KB
testcase_73 AC 370 ms
11,448 KB
testcase_74 AC 370 ms
11,448 KB
testcase_75 AC 366 ms
11,452 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};

// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = n;
  if (m >>= 1) {
    for (int i = 0; i < m; ++i) {
      const unsigned x = as[i + m].x;  // < MO
      as[i + m].x = as[i].x + MO - x;  // < 2 MO
      as[i].x += x;  // < 2 MO
    }
  }
  if (m >>= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned x = (prod * as[i + m]).x;  // < MO
        as[i + m].x = as[i].x + MO - x;  // < 3 MO
        as[i].x += x;  // < 3 MO
      }
      prod *= FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  for (; m; ) {
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i + m].x = as[i].x + MO - x;  // < 4 MO
          as[i].x += x;  // < 4 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
    if (m >>= 1) {
      Mint prod = 1U;
      for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
        for (int i = i0; i < i0 + m; ++i) {
          const unsigned x = (prod * as[i + m]).x;  // < MO
          as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
          as[i + m].x = as[i].x + MO - x;  // < 3 MO
          as[i].x += x;  // < 3 MO
        }
        prod *= FFT_RATIOS[__builtin_ctz(++h)];
      }
    }
  }
  for (int i = 0; i < n; ++i) {
    as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
    as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x;  // < MO
  }
}

// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
  assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
  int m = 1;
  if (m < n >> 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
    m <<= 1;
  }
  for (; m < n >> 1; m <<= 1) {
    Mint prod = 1U;
    for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
      for (int i = i0; i < i0 + (m >> 1); ++i) {
        const unsigned long long y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
        as[i].x += as[i + m].x;  // < 4 MO
        as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
        const unsigned long long y = as[i].x + MO - as[i + m].x;  // < 2 MO
        as[i].x += as[i + m].x;  // < 2 MO
        as[i + m].x = (prod.x * y) % MO;  // < MO
      }
      prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
    }
  }
  if (m < n) {
    for (int i = 0; i < m; ++i) {
      const unsigned y = as[i].x + MO2 - as[i + m].x;  // < 4 MO
      as[i].x += as[i + m].x;  // < 4 MO
      as[i + m].x = y;  // < 4 MO
    }
  }
  const Mint invN = Mint(n).inv();
  for (int i = 0; i < n; ++i) {
    as[i] *= invN;
  }
}

void fft(vector<Mint> &as) {
  fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
  invFft(as.data(), as.size());
}

vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
  if (as.empty() || bs.empty()) return {};
  const int len = as.size() + bs.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  bs.resize(n); fft(bs);
  for (int i = 0; i < n; ++i) as[i] *= bs[i];
  invFft(as);
  as.resize(len);
  return as;
}
vector<Mint> square(vector<Mint> as) {
  if (as.empty()) return {};
  const int len = as.size() + as.size() - 1;
  int n = 1;
  for (; n < len; n <<= 1) {}
  as.resize(n); fft(as);
  for (int i = 0; i < n; ++i) as[i] *= as[i];
  invFft(as);
  as.resize(len);
  return as;
}
////////////////////////////////////////////////////////////////////////////////

unsigned xrand() {
  static unsigned x = 314159265, y = 358979323, z = 846264338, w = 327950288;
  unsigned t = x ^ x << 11; x = y; y = z; z = w; return w = w ^ w >> 19 ^ t ^ t >> 8;
}


int N;
vector<int> A;

vector<Mint> fss[3], gss[3];

vector<Mint> slice(int d, int l, int r) {
  return vector<Mint>(fss[d].begin() + l, fss[d].begin() + r);
}

void solve(int l0, int r0, int l1, int r1) {
  assert(r0 - l0 == r1 - l1);
  if (r0 - l0 == 1) {
    for (int d = 0; d < 3; ++d) {
      gss[d][l0 + l1] += 2 * fss[d][l0] * fss[2 - d][l1];
    }
  } else {
    const int mid0 = l0 + (r0 - l0) / 2;
    const int mid1 = l1 + (r0 - l0) / 2;
    solve(l0, mid0, l1, mid1);
    solve(mid0, r0, mid1, r1);
    for (int d = 0; d < 3; ++d) {
      const auto prod = convolve(slice(d, mid0, r0), slice(2 - d, l1, mid1));
      for (int i = 0; i < (int)prod.size(); ++i) {
        gss[d][mid0 + l1 + i] += 2 * prod[i];
      }
    }
  }
}

int main() {
  for (; ~scanf("%d", &N); ) {
    A.resize(3 * N);
    for (int i = 0; i < 2 * N; ++i) {
      scanf("%d", &A[i]);
    }
    for (int i = 2 * N; i < (int)A.size(); ++i) {
      A[i] = A[i - 2 * N];
    }
    
    vector<Mint> tr(2 * N + 1);
    for (int a = 0; a < (int)tr.size(); ++a) {
#ifdef LOCAL
      tr[a] = a;
#else
      tr[a] = xrand();
#endif
    }
    for (int d = 0; d < 3; ++d) {
      fss[d].assign((int)A.size(), 0);
      gss[d].assign(2 * (int)A.size(), 0);
    }
    for (int i = 0; i < (int)A.size(); ++i) if (~A[i]) {
      fss[0][i] = 1;
      fss[1][i] = tr[A[i]];
      fss[2][i] = tr[A[i]] * tr[A[i]];
    }
    
    /*
    for (int d = 0; d < 3; ++d) {
      for (int i = 0; i < (int)A.size(); ++i) for (int j = 0; j < (int)A.size(); ++j) {
        if (abs(i - j) <= N) {
          gss[d][i + j] += fss[d][i] * fss[2 - d][j];
        }
      }
    }
    //*/
    //*
    for (int s = 0; s < 3; ++s) {
      for (int d = 0; d < 3; ++d) {
        const auto prod = convolve(slice(d, s * N, (s + 1) * N), slice(2 - d, s * N, (s + 1) * N));
        for (int i = 0; i < (int)prod.size(); ++i) {
          gss[d][2 * s * N + i] += prod[i];
        }
      }
    }
    for (int s = 0; s < 2; ++s) {
      solve(s * N, (s + 1) * N, (s + 1) * N, (s + 2) * N);
    }
    //*/
    
    vector<Mint> gs(2 * (int)A.size(), 0);
    for (int i = 0; i < 2 * (int)A.size(); ++i) {
      gs[i] += gss[0][i];
      gs[i] -= 2 * gss[1][i];
      gs[i] += gss[2][i];
    }
// cerr<<"gs = "<<gs<<endl;
    
    // [0, N-1], [0, N], [1, N], ..., [2N-1, 3N-1]
    bool ans = false;
    for (int i = N - 1; i <= 5 * N - 2; ++i) {
// if(!gs[i])cerr<<"match "<<i<<endl;
      ans = ans || (!gs[i]);
    }
    puts(ans ? "Yes" : "No");
  }
  return 0;
}
0