結果

問題 No.2487 Multiple of M
ユーザー prin_kemkemprin_kemkem
提出日時 2023-09-29 23:43:20
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 3,844 bytes
コンパイル時間 371 ms
コンパイル使用メモリ 82,012 KB
実行使用メモリ 81,232 KB
最終ジャッジ日時 2024-07-23 06:55:10
合計ジャッジ時間 7,504 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 51 WA * 2
権限があれば一括ダウンロードができます

ソースコード

diff #

from collections import defaultdict, deque, Counter
import copy
from itertools import combinations, permutations, product, accumulate, groupby, chain
from heapq import heapify, heappop, heappush
import math
import bisect
from pprint import pprint
from random import randint
import sys
# sys.setrecursionlimit(700000)
input = lambda: sys.stdin.readline().rstrip('\n')
inf = float('inf')
mod1 = 10**9+7
mod2 = 998244353
def ceil_div(x, y): return -(-x//y)

#################################################

class Matrix():
    def __init__(self, mat, mod=None):
        self.mat = mat
        self.n = len(mat)
        self.m = len(mat[0])
        self.mod = mod
    def __mul__(self, other):
        ret = Matrix([[0]*other.m for _ in range(self.n)], self.mod)
        for i in range(self.n):
            for j in range(other.m):
                for k in range(self.m):
                    ret[i][j] += self.mat[i][k]*other.mat[k][j]
                    if self.mod is not None: ret[i][j] %= self.mod
        return ret
    def __add__(self, other):
        ret = Matrix([[self.mat[i][j] for j in range(self.m)] for i in range(self.n)], self.mod)
        for i in range(other.n):
            for j in range(other.m):
                ret[i][j] += other.mat[i][j]
                if self.mod is not None: ret[i][j] %= self.mod
        return ret
    def __sub__(self, other):
        ret = Matrix([[self.mat[i][j] for j in range(self.m)] for i in range(self.n)], self.mod)
        for i in range(other.n):
            for j in range(other.m):
                ret[i][j] -= other.mat[i][j]
                if self.mod is not None: ret[i][j] %= self.mod
        return ret
    def __pow__(self, scalar):
        a = Matrix([[self.mat[i][j] for j in range(self.m)] for i in range(self.n)], self.mod)
        ret = Matrix.e(self.n, self.mod)
        while scalar:
            if scalar&1:
                ret *= a
            a *= a
            scalar >>= 1
        return ret
    def scalar_mul(self, a):
        ret = Matrix([[self.mat[i][j] for j in range(self.m)] for i in range(self.n)], self.mod)
        for i in range(self.n):
            for j in range(self.m):
                ret[i][j] *= a
                if self.mod is not None: ret[i][j] %= self.mod
        return ret
    def __repr__(self) -> str:
        return self.mat.__repr__()
    def __getitem__(self, i):
        return self.mat[i]
    def __setitem__(self, i, x):
        self.mat[i] = x
    def __len__(self):
        return len(self.mat)
    def t(self):
        return Matrix([list(column) for column in zip(*self.mat)], self.mod)
    def turn(matrix):
        if type(matrix) != 'Matrix':
            return Matrix([list(column) for column in zip(*matrix)])
        return Matrix([list(column) for column in zip(*matrix.mat)], matrix.mod)
    def e(size, mod):
        return Matrix([[i == j for j in range(size)] for i in range(size)], mod)

def prime_factorize(n):
    ret = defaultdict(int)
    i = 2
    while i*i <= n:
        if n%i == 0:
            ret[i] += 1
            n //= i
        else:
            i += 1
    if n != 1:
        ret[n] += 1
    return ret

N, M, K = map(int, input().split())
a = Matrix([[0], [1]], mod=mod2)
PM, PK = prime_factorize(M), prime_factorize(K)
x = 0
s = {}
for p, e in PM.items():
    if PK[p] == 0: continue
    s[p] = PK[p]
    x = max(x, ceil_div(e, PK[p]))
i = 0
while i < min(x, N):
    d = 1
    for p, e in s.items():
        d *= p**min(PM[p], e*(i+1))
    l = M//d
    A = Matrix([[d-1, d*(l-1)%mod2], [d, (d-1+d*(l-2))%mod2]], mod=mod2)
    a = A*a
    i += 1
if i == N:
    print(a[0][0])
    exit()
d = 1
for p, e in s.items():
    d *= p**min(PM[p], e*(i+1))
l = M//d
if l == 1:
    print(0)
else:
    A = Matrix([[d-1, d*(l-1)%mod2], [d, (d-1+d*(l-2))%mod2]], mod=mod2)
    a = A**(N-1-i) * a
    print(a[0][0])
0