結果
| 問題 |
No.2488 Mod Sum Maximization
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-09-30 01:05:20 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 262 ms / 2,000 ms |
| コード長 | 6,610 bytes |
| コンパイル時間 | 1,146 ms |
| コンパイル使用メモリ | 108,216 KB |
| 実行使用メモリ | 24,448 KB |
| 最終ジャッジ日時 | 2024-07-22 19:01:48 |
| 合計ジャッジ時間 | 7,421 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 38 |
ソースコード
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
// T: monoid representing information of an interval.
// T() should return the identity.
// T(S s) should represent a single element of the array.
// T::pull(const T &l, const T &r) should pull two intervals.
template <class T> struct SegmentTreePoint {
int logN, n;
vector<T> ts;
SegmentTreePoint() : logN(0), n(0) {}
explicit SegmentTreePoint(int n_) {
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
}
template <class S> explicit SegmentTreePoint(const vector<S> &ss) {
const int n_ = ss.size();
for (logN = 0, n = 1; n < n_; ++logN, n <<= 1) {}
ts.resize(n << 1);
for (int i = 0; i < n_; ++i) at(i) = T(ss[i]);
build();
}
T &at(int i) {
return ts[n + i];
}
void build() {
for (int u = n; --u; ) pull(u);
}
inline void pull(int u) {
ts[u].pull(ts[u << 1], ts[u << 1 | 1]);
}
// Changes the value of point a to s.
template <class S> void change(int a, const S &s) {
assert(0 <= a); assert(a < n);
ts[a += n] = T(s);
for (; a >>= 1; ) pull(a);
}
// Applies T::f(args...) to point a.
template <class F, class... Args>
void ch(int a, F f, Args &&... args) {
assert(0 <= a); assert(a < n);
(ts[a += n].*f)(args...);
for (; a >>= 1; ) pull(a);
}
// Calculates the product for [a, b).
T get(int a, int b) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return T();
a += n; b += n;
T prodL, prodR, t;
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) { t.pull(prodL, ts[aa++]); prodL = t; }
if (bb & 1) { t.pull(ts[--bb], prodR); prodR = t; }
}
t.pull(prodL, prodR);
return t;
}
// Calculates T::f(args...) of a monoid type for [a, b).
// op(-, -) should calculate the product.
// e() should return the identity.
template <class Op, class E, class F, class... Args>
#if __cplusplus >= 201402L
auto
#else
decltype((std::declval<T>().*F())())
#endif
get(int a, int b, Op op, E e, F f, Args &&... args) {
assert(0 <= a); assert(a <= b); assert(b <= n);
if (a == b) return e();
a += n; b += n;
auto prodL = e(), prodR = e();
for (int aa = a, bb = b; aa < bb; aa >>= 1, bb >>= 1) {
if (aa & 1) prodL = op(prodL, (ts[aa++].*f)(args...));
if (bb & 1) prodR = op((ts[--bb].*f)(args...), prodR);
}
return op(prodL, prodR);
}
// Find min b s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from left to right.
// Returns n + 1 if there is no such b.
template <class F, class... Args>
int findRight(int a, F f, Args &&... args) {
assert(0 <= a); assert(a <= n);
if ((T().*f)(args...)) return a;
if (a == n) return n + 1;
a += n;
for (; ; a >>= 1) if (a & 1) {
if ((ts[a].*f)(args...)) {
for (; a < n; ) {
if (!(ts[a <<= 1].*f)(args...)) ++a;
}
return a - n + 1;
}
++a;
if (!(a & (a - 1))) return n + 1;
}
}
// Find max a s.t. T::f(args...) returns true,
// when called for the partition of [a, b) from right to left.
// Returns -1 if there is no such a.
template <class F, class... Args>
int findLeft(int b, F f, Args &&... args) {
assert(0 <= b); assert(b <= n);
if ((T().*f)(args...)) return b;
if (b == 0) return -1;
b += n;
for (; ; b >>= 1) if ((b & 1) || b == 2) {
if ((ts[b - 1].*f)(args...)) {
for (; b <= n; ) {
if (!(ts[(b <<= 1) - 1].*f)(args...)) --b;
}
return b - n - 1;
}
--b;
if (!(b & (b - 1))) return -1;
}
}
};
////////////////////////////////////////////////////////////////////////////////
constexpr Int INF = 1001001001001001001LL;
struct NodeMin {
Int mn;
NodeMin() : mn(+INF) {}
NodeMin(Int val) : mn(val) {}
void pull(const NodeMin &l, const NodeMin &r) {
mn = min(l.mn, r.mn);
}
void ch(Int val) {
mn = val;
}
void chmin(Int val) {
if (mn > val) mn = val;
}
bool test(Int tar) const {
return (mn <= tar);
}
};
struct NodeMax {
Int mx;
NodeMax() : mx(-INF) {}
NodeMax(Int val) : mx(val) {}
void pull(const NodeMax &l, const NodeMax &r) {
mx = max(l.mx, r.mx);
}
void ch(Int val) {
mx = val;
}
void chmax(Int val) {
if (mx < val) mx = val;
}
bool test(Int tar) const {
return (mx >= tar);
}
};
////////////////////////////////////////////////////////////////////////////////
/*
N-1 = i[0] > i[1] > ... > i[d-1] > i[d] = 0
others: incr.
score = \sum A[*] + \sum[0<=j<d] (-A[i[j]] + (A[i[j]] mod A[i[j+1]]))
= \sum A[*] - \sum[0<=j<d] floor(A[i[j]] / A[i[j+1]]) A[i[j+1]]
*/
int N;
vector<Int> A;
int main() {
for (; ~scanf("%d", &N); ) {
A.resize(N);
for (int i = 0; i < N; ++i) {
scanf("%lld", &A[i]);
}
SegmentTreePoint<NodeMin> seg(A[N - 1] + 1);
vector<Int> dp(N, INF);
for (int i = N; --i >= 0; ) {
if (i == N - 1) {
dp[i] = 0;
} else {
for (Int q = 1; A[i] * q <= A[N - 1]; ++q) {
const Int res = seg.get(A[i] * q, min(A[i] * (q + 1), A[N - 1] + 1)).mn;
chmin(dp[i], res + A[i] * q);
}
}
seg.change(A[i], dp[i]);
}
// cerr<<"dp = "<<dp<<endl;
Int ans = 0;
for (int i = 0; i < N; ++i) ans += A[i];
ans -= dp[0];
printf("%lld\n", ans);
}
return 0;
}