結果
問題 | No.2487 Multiple of M |
ユーザー | 👑 p-adic |
提出日時 | 2023-09-30 08:27:51 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 28,404 bytes |
コンパイル時間 | 3,855 ms |
コンパイル使用メモリ | 239,780 KB |
実行使用メモリ | 13,760 KB |
最終ジャッジ日時 | 2024-07-23 06:56:28 |
合計ジャッジ時間 | 7,352 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,760 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | TLE | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
testcase_47 | -- | - |
testcase_48 | -- | - |
testcase_49 | -- | - |
testcase_50 | -- | - |
testcase_51 | -- | - |
testcase_52 | -- | - |
testcase_53 | -- | - |
testcase_54 | -- | - |
testcase_55 | -- | - |
ソースコード
#ifdef DEBUG #define _GLIBCXX_DEBUG #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort ) #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE ) #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl #define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl #define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl #define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl #define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl #define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) ) #define AUTO_CHECK int auto_checked; AutoCheck( auto_checked ); if( auto_checked == 3 ){ Jikken(); return 0; } else if( auto_checked == 4 ){ Debug(); return 0; } else if( auto_checked != 0 ){ return 0; }; #else #pragma GCC optimize ( "O3" ) #pragma GCC optimize ( "unroll-loops" ) #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ) #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE ) #define CERR( ... ) #define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n" #define CERR_A( A , N ) #define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n" #define CERR_ITR( A ) #define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n" #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) ) #define AUTO_CHECK #endif #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using lld = __float128; template <typename INT> using T2 = pair<INT,INT>; template <typename INT> using T3 = tuple<INT,INT,INT>; template <typename INT> using T4 = tuple<INT,INT,INT,INT>; using path = pair<int,ll>; // #define RANDOM_TEST #if defined( DEBUG ) && defined( RANDOM_TEST ) ll GetRand( const ll& Rand_min , const ll& Rand_max ); #define SET_ASSERT( A , MIN , MAX ) CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ) #define CIN( LL , ... ) LL __VA_ARGS__; static_assert( false ) #define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = bound_T; static_assert( bound_T > 1 ) #define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ANSWER , "==" , guchoku ); goto END_MAIN; } else { CERR( ANSWER , "!=" , guchoku ); return 0; } #else #define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX ) #define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ ) #define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 , bound_T ); } #define RETURN( ANSWER ) COUT( ANSWER ); QUIT #endif #define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) ) #define TYPE_OF( VAR ) decay_t<decltype( VAR )> #define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE #define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX ) #define CIN_A( LL , A , N ) LL A[N]; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; } #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ ) #define GETLINE( ... ) GETLINE_SEPARATE( " " , ... ) #define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ ) #define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ ) #define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- ) #define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end() #define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ ) #define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES ) #define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ) #define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS #define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS #define QUIT goto END_MAIN #define START_MAIN REPEAT( T ){ { if constexpr( bound_T > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_T , ":" ); } #define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now() #define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) #define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 ) #define FINISH_MAIN QUIT; } END_MAIN: CERR( "" ); } // 入出力用関数 template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; } template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); } template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; } template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); } template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os << arg; } template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); } // 算術用関数 template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); } inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); } inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); } inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); } inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); } #define POWER( ANSWER , ARGUMENT , EXPONENT ) \ static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \ TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \ { \ TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ ll ANSWER{ 1 }; \ { \ ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \ TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \ while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \ if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ } \ ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \ EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \ } \ } \ #define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \ static ll ANSWER[CONSTEXPR_LENGTH]; \ static ll ANSWER_INV[CONSTEXPR_LENGTH]; \ static ll INVERSE[CONSTEXPR_LENGTH]; \ { \ ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \ FOREQ( i , 1 , MAX_INDEX ){ \ ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \ } \ ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ FOREQ( i , 2 , MAX_INDEX ){ \ ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % ( MODULO ) ) ) %= ( MODULO ); \ } \ } \ // 二分探索テンプレート // EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。 #define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \ static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \ ll ANSWER = MINIMUM; \ if( MINIMUM <= MAXIMUM ){ \ ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \ while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \ VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \ CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \ if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \ VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \ } else { \ VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \ } \ ANSWER = UPDATE_ANSWER; \ } \ CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \ if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \ CERR( "二分探索成功" ); \ } else { \ CERR( "二分探索失敗" ); \ ANSWER = MAXIMUM + 1; \ } \ } else { \ CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM ); \ ANSWER = MAXIMUM + 1; \ } \ // 単調増加の時にEXPRESSION >= TARGETの最小解を格納。 #define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調増加の時にEXPRESSION <= TARGETの最大解を格納。 #define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION >= TARGETの最大解を格納。 #define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // 単調減少の時にEXPRESSION <= TARGETの最小解を格納。 #define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \ BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \ // t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; } auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; } // t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); } // tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。 template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); } // データ構造用関数 template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; } template <typename T> inline T xor_add( const T& t0 , const T& t1 ){ return t0 ^ t1; } template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; } template <typename T> inline const T& zero() { static const T z = 0; return z; } template <typename T> inline const T& one() { static const T o = 1; return o; }\ template <typename T> inline T add_inv( const T& t ) { return -t; } template <typename T> inline T id( const T& v ) { return v; } // グリッド問題用関数 int H , W , H_minus , W_minus , HW; inline pair<int,int> EnumHW( const int& v ) { return { v / W , v % W }; } inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; } const string direction[4] = {"U","R","D","L"}; // (i,j)->(k,h)の方向番号を取得 inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);} // v->wの方向番号を取得 inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);} // 方向番号の反転U<->D、R<->L inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;} inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v = EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}} inline void SetEdgeOnGrid( const string& Si , const int& i , list<pair<int,ll> > ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}} inline void SetWallOnGrid( const string& Si , const int& i , bool ( &non_wall_i )[] , const char& walkable = '.' , const char& unwalkable = '#' ){FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}} // グラフ用関数 template <typename path_type> list<path_type> E( const int& i ); // 本体をmain()の後に定義 template <typename path_type> vector<list<path_type> > e; // デバッグ用関数 #ifdef DEBUG inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); } void AutoCheck( int& auto_checked ); void Jikken(); void Debug(); #endif // 圧縮用 #define TE template #define TY typename #define US using #define ST static #define IN inline #define CL class #define PU public #define OP operator #define CE constexpr #define CO const #define NE noexcept #define RE return #define WH while #define VO void #define VE vector #define LI list #define BE begin #define EN end #define SZ size #define MO move #define TH this #define CRI CO int& #define CRUI CO uint& #define CRL CO ll& /* C-x 3 C-x o C-x C-fによるファイル操作用 BIT: c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txt BFS: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt DFS on Tree: c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepththFirstSearch/Tree/compress.txt Divisor: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt Mod: c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt Polynomial c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt */ // VVV ライブラリは以下に挿入する。 TE <TY INT,INT val_limit,int LE_max = val_limit>CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration();CE CO INT& OP[](CRI n) CO;CE CO INT& Get(CRI n) CO;CE CO bool& IsComposite(CRI i) CO;CE CRI LE() CO NE;}; TE <TY INT,INT val_limit,int LE_max>CE PrimeEnumeration<INT,val_limit,LE_max>::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i < val_limit;i++){if(! m_is_composite[i]){INT j = i;WH((j += i)< val_limit){m_is_composite[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break;}}}}TE <TY INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::OP[](CRI n)CO{assert(n < m_LE);RE m_val[n];}TE <TY INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::Get(CRI n)CO{RE OP[](n);}TE <TY INT,INT val_limit,int LE_max> CE CO bool& PrimeEnumeration<INT,val_limit,LE_max>::IsComposite(CRI i)CO{assert(i < val_limit);RE m_is_composite[i];}TE <TY INT,INT val_limit,int LE_max> CE CRI PrimeEnumeration<INT,val_limit,LE_max>::LE()CO NE{RE m_LE;} TE <TY INT,INT val_limit,int LE_max>VO SetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT& n,VE<INT>& P,VE<INT>& EX){INT n_copy = n;int i = 0;WH(i < prime.m_LE){CO INT& p = prime[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P.push_back(p);EX.push_back(1);INT& EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back(n_copy);EX.push_back(1);}RE;} TE <TY INT,INT val_limit,int LE_max>INT CountDivisor(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n) NE{VE<INT> P{};VE<INT> EX{};SetPrimeFactorisation(prime,n,P,EX);P.clear();CO int LE = EX.SZ();INT AN = 1;for(int i = 0;i < LE;i++){AN *= EX[i] + 1;}RE AN;} TE <TY INT,INT val_limit,int LE_max>LI<INT> EnumerateDivisor(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n) NE{VE<INT> P{};VE<INT> EX{};SetPrimeFactorisation(prime,n,P,EX);CO int LE = P.SZ();LI<INT> divisor{};divisor.push_back(1);auto BE = divisor.BE(),EN = divisor.EN();for(int i = 0;i < LE;i++){CO INT& P_i = P[i];CRI EX_i = EX[i];LI<INT> temp{};INT PW = 1;for(int e = 1;e <= EX_i;e++){PW *= P_i;for(auto IT = BE;IT != EN;IT++){temp.push_back(*IT * PW);}}WH(! temp.empty()){divisor.push_back(temp.front());temp.pop_front();}}RE divisor;} TE <int SZ_max> VO MemoriseEnumerateDivisor(LI<int>(&memory)[SZ_max])NE{for(int d = 1;d < SZ_max;d++){int n = 0;WH((n += d)< SZ_max){memory[n].push_back(d);}}RE;} TE <TY INT,INT val_limit,int LE_max>int MoeviusFunction(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n)NE{int AN = 1;int i = 0;WH(i < prime.m_LE && n > 1){CRI p = prime[i++];if(n % p == 0){if((n /= p)% p == 0){RE 0;}AN *= -1;}}RE n == 1?AN:AN *= -1;} // AAA ライブラリは以上に挿入する。 template <typename path_type> list<path_type> E( const int& i ) { // list<path_type> answer{}; list<path_type> answer = e<path_type>[i]; // VVV 入力によらない処理は以下に挿入する。 // AAA 入力によらない処理は以上に挿入する。 return answer; } ll Guchoku( int N , int M , int K ) { ll answer = 0; ll A[N]; FOR( d , 0 , N ){ A[d] = 1; } ll prod[N] = { 1 }; FOR( d , 1 , N ){ prod[d] = prod[d-1] * K % M; } POWER( power , ll( M - 1 ) , N ); REPEAT( power ){ ll sum = 0; FOR( d , 0 , N ){ sum += A[d] * prod[d]; } sum % M == 0 ? ++answer : answer; FOR( d , 0 , N ){ if( ++A[d] == M ){ A[d] = 1; } else { break; } } } return answer; } ll Answer( int N , int M , int K ) { if( N == 1 ){ return 0; } CEXPR( ll , P , 998244353 ); constexpr PrimeEnumeration<int,31622> pe{}; vector<int> prime; vector<int> exponent; SetPrimeFactorisation( pe , M , prime , exponent ); int size = prime.size(); int e_max = 0; FOR( i , 0 , size ){ e_max = max( e_max , exponent[i] ); } ll K_div[e_max+2]; FOREQ( j , 0 , e_max ){ K_div[j] = 1; } K_div[e_max+1] = M; FOR( i , 0 , size ){ int d = 0; while( K % prime[i] == 0 ){ K /= prime[i]; d++; } int d_mul = 0; ll power = 1; FOREQ( j , 1 , e_max ){ int d_mul_new = min( d * j , exponent[i] ); FOR( k , d_mul , d_mul_new ){ power *= prime[i]; } K_div[j] *= power; d_mul = d_mul_new; } } ll K_dif[e_max+2] = { K_div[0] }; FOREQ( j , 1 , e_max + 1 ){ K_dif[j] = K_div[j] - K_div[j-1]; } ll dp[2][e_max+2]; dp[0][0] = 0; FOREQ( j , 1 , e_max + 1 ){ dp[0][j] = K_dif[j]; } int i_prev = 0; int i_curr = 1; N -= 2; REPEAT( N ){ auto& dp_curr = dp[i_curr]; FOREQ( j , 0 , e_max + 1 ){ dp_curr[j] = 0; } auto& dp_prev = dp[i_prev]; FOREQ( j , 0 , e_max ){ FOREQ( k , 0 , e_max + 1 ){ ( dp_curr[j] += dp_prev[k] * ( K_dif[j] - ( ( k == 0 && j == 0 ) || ( k == j + 1 && k <= e_max ) ? 1 : 0 ) ) ) %= P; } } FOREQ( k , 0 , e_max + 1 ){ ( dp_curr[e_max+1] += dp_prev[k] * ( K_dif[e_max+1] - ( k == e_max + 1 ? 1 : 0 ) ) ) %= P; } swap( i_curr , i_prev ); } ll answer = 0; FOREQ( j , 2 , e_max + 1 ){ answer += dp[i_prev][j]; } ( answer %= P ) < 0 ? answer += P : answer; return answer; } int main() { UNTIE; AUTO_CHECK; // START_WATCH; TEST_CASE_NUM( 1 ); START_MAIN; // // 大きな素数 // CEXPR( ll , P , 998244353 ); // // CEXPR( ll , P , 1000000007 ); // Mod<P>を使う時はP2に変更。 // // データ構造使用畤のNの上限 DEXPR( int , bound_N , 1000000000 , 1000 ); // 0が5個 // // CEXPR( int , bound_N , 1000000000 ); // 0が9個 // // CEXPR( ll , bound_N , 1000000000000000000 ); // 0が18個 // // データ構造使用畤のMの上限 // // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N ); DEXPR( int , bound_M , 1000000000 , 1000 ); // 0が5個 // // CEXPR( int , bound_M , 1000000000 ); // 0が9個 // // CEXPR( ll , bound_M , 1000000000000000000 ); // 0が18個 DEXPR( int , bound_K , 1000000000 , 1000 ); // 0が5個 // // 数 // CIN( ll , N ); // CIN( ll , M ); // CIN( int , N , M , K ); CIN_ASSERT( N , 1 , bound_N ); // ランダムテスト用。上限のデフォルト値は10^5。 CIN_ASSERT( M , 1 , bound_M ); // ランダムテスト用。上限のデフォルト値は10^5。 CIN_ASSERT( K , 1 , bound_K ); // ランダムテスト用。上限のデフォルト値は10^5。 // // 文字列 // CIN( string , S ); // CIN( string , T ); // // 配列 // CIN_A( ll , A , N ); // // CIN_A( ll , B , N ); // // ll A[N]; // // ll B[N]; // // ll A[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。 // // ll B[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。 // // FOR( i , 0 , N ){ // // cin >> A[i] >> B[i]; // // } // // 順列 // int P[N]; // int P_inv[N]; // FOR( i , 0 , N ){ // cin >> P[i]; // P_inv[--P[i]] = i; // } // // グラフ // FOR( j , 0 , M ){ // CIN_ASSERT( uj , 1 , N ); // CIN_ASSERT( vj , 1 , N ); // uj--; // vj--; // e<int>[uj].push_back( vj ); // e<int>[vj].push_back( uj ); // // CIN( ll , wj ); // // e<path>[uj].push_back( { vj , wj } ); // // e<path>[vj].push_back( { uj , wj } ); // } // // 座標圧縮や単一クエリタイプなどのための入力格納 // T3<ll> data[M]; // FOR( j , 0 , M ){ // CIN( ll , x , y , z ); // data[j] = { x , y , z }; // } // // 一般のクエリ // CIN( int , Q ); // // DEXPR( int , bound_Q , 100000 , 100 ); // 基本不要。 // // CIN_ASSERT( Q , 1 , bound_Q ); // 基本不要。 // // T3<int> query[Q]; // // T2<int> query[Q]; // FOR( q , 0 , Q ){ // CIN( int , type ); // if( type == 1 ){ // CIN( int , x , y ); // // query[q] = { type , x , y }; // } else if( type == 2 ){ // CIN( int , x , y ); // // query[q] = { type , x , y }; // } else { // CIN( int , x , y ); // // query[q] = { type , x , y }; // } // // CIN( int , x , y ); // // // query[q] = { x , y }; // } // // sort( query , query + Q ); // // FOR( q , 0 , Q ){ // // auto& [x,y] = query[q]; // // // auto& [type,x,y] = query[q]; // // } // // データ構造や壁配列使用畤のH,Wの上限 // DEXPR( int , bound_H , 1000 , 20 ); // // DEXPR( int , bound_H , 100000 , 10 ); // 0が5個 // // CEXPR( int , bound_H , 1000000000 ); // 0が9個 // CEXPR( int , bound_W , bound_H ); // static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 ); // CEXPR( int , bound_HW , bound_H * bound_W ); // // CEXPR( int , bound_HW , 100000 ); // 0が5個 // // CEXPR( int , bound_HW , 1000000 ); // 0が6個 // // グリッド // cin >> H >> W; // // SET_ASSERT( H , 1 , bound_H ); // ランダムテスト用。上限のデフォルト値は10^3。 // // SET_ASSERT( W , 1 , bound_W ); // ランダムテスト用。上限のデフォルト値は10^3。 // H_minus = H - 1; // W_minus = W - 1; // HW = H * W; // // assert( HW <= bound_HW ); // 基本不要。上限のデフォルト値は10^6。 // string S[H]; // // bool non_wall[H+1][W+1]={}; // FOR( i , 0 , H ){ // cin >> S[i]; // // SetEdgeOnGrid( S[i] , i , e<int> ); // // SetWallOnGrid( S[i] , i , non_wall[i] ); // } // // {h,w}へデコード: EnumHW( v ) // // {h,w}をコード: EnumHW_inv( h , w ); // // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h ); // // v->wの方向番号を取得: DirectionNumberOnGrid( v , w ); // // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n ); // // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。 // CEXPR( double , TL , 2000.0 ); // while( CHECK_WATCH( TL ) ){ // } // // ランダムテスト用の愚直解 // auto guchoku = Guchoku( N , M , K ); ll answer = Answer( N , M , K ); // // MP answer{}; // FOR( i , 0 , N ){ // answer += A[i]; // } RETURN( answer ); // // COUT( answer ); // // COUT_A( A , N ); FINISH_MAIN; } void Jikken() { // CEXPR( int , bound , 10 ); // FOREQ( N , 1 , bound ){ // FOREQ( M , 2 , bound ){ // FOREQ( K , 1 , bound ){ // COUT( N , M , K , ":" , Guchoku( N , M , K ) ); // } // } // // cout << Guchoku( N ) << ",\n"[N==bound]; // } } void Debug() { CEXPR( int , bound , 10 ); FOREQ( N , 1 , bound ){ FOREQ( M , 2 , bound ){ FOREQ( K , 1 , bound ){ auto guchoku = Guchoku( N , M , K ); auto answer = Answer( N , M , K ); bool match = guchoku == answer; COUT( N , M , K , ":" , guchoku , match ? "==" : "!=" , answer ); if( !match ){ return; } } } // auto guchoku = Guchoku( N ); // auto answer = Answer( N ); // bool match = guchoku == answer; // COUT( N , ":" , guchoku , match ? "==" : "!=" , answer ); // if( !match ){ // return; // } } }