結果

問題 No.2487 Multiple of M
ユーザー 👑 p-adicp-adic
提出日時 2023-09-30 10:19:25
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 28,483 bytes
コンパイル時間 11,425 ms
コンパイル使用メモリ 294,348 KB
最終ジャッジ日時 2025-02-17 03:46:24
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other TLE * 1 -- * 52
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << " " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << " "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << " "; OUTPUT_ITR( cout , A ) << endl
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )
      ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define AUTO_CHECK int auto_checked; AutoCheck( auto_checked ); if( auto_checked == 3 ){ Jikken(); return 0; } else if( auto_checked == 4 ){ Debug
      (); return 0; } else if( auto_checked != 0 ){ return 0; };
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define AUTO_CHECK
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
template <typename INT> using T2 = pair<INT,INT>;
template <typename INT> using T3 = tuple<INT,INT,INT>;
template <typename INT> using T4 = tuple<INT,INT,INT,INT>;
using path = pair<int,ll>;
// #define RANDOM_TEST
#if defined( DEBUG ) && defined( RANDOM_TEST )
ll GetRand( const ll& Rand_min , const ll& Rand_max );
#define SET_ASSERT( A , MIN , MAX ) CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) )
#define CIN( LL , ... ) LL __VA_ARGS__; static_assert( false )
#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = bound_T; static_assert( bound_T > 1 )
#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ANSWER , "==" , guchoku ); goto END_MAIN; } else { CERR( ANSWER , "!=" , guchoku );
      return 0; }
#else
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 ,
      bound_T ); }
#define RETURN( ANSWER ) COUT( ANSWER ); QUIT
#endif
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A( LL , A , N ) LL A[N]; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
#define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) GETLINE_SEPARATE( " " , ... )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?""
    :" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR =
    ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =
    ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define QUIT goto END_MAIN
#define START_MAIN REPEAT( T ){ { if constexpr( bound_T > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_T , ":" ); }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define FINISH_MAIN QUIT; } END_MAIN: CERR( "" ); }
//
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,
    ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const
    char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os
    << arg; }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits
    >& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }
//
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); }
inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); }
inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); }
inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<
          TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
CERR( " " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (
        EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \
if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \
CERR( "" ); \
} else { \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} \
} else { \
CERR( " " << MINIMUM << ">" << MAXIMUM ); \
ANSWER = MAXIMUM + 1; \
} \
// 調EXPRESSION >= TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION >= TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;
    } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }
    auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }
//
template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline T xor_add( const T& t0 , const T& t1 ){ return t0 ^ t1; }
template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
template <typename T> inline const T& zero() { static const T z = 0; return z; }
template <typename T> inline const T& one() { static const T o = 1; return o; }\
template <typename T> inline T add_inv( const T& t ) { return -t; }
template <typename T> inline T id( const T& v ) { return v; }
//
int H , W , H_minus , W_minus , HW;
inline pair<int,int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
const string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)
inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// v->w
inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}
// U<->DR<->L
inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v =
    EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v
    );}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<pair<int,ll> > ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]
    ==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0
    ){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
inline void SetWallOnGrid( const string& Si , const int& i , bool ( &non_wall_i )[] , const char& walkable = '.' , const char& unwalkable = '#'
    ){FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}
//
template <typename path_type> list<path_type> E( const int& i ); // main()
template <typename path_type> vector<list<path_type> > e;
//
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void AutoCheck( int& auto_checked );
void Jikken();
void Debug();
#endif
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
/*
C-x 3 C-x o C-x C-f
BIT:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txt
BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt
DFS on Tree:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepththFirstSearch/Tree/compress.txt
Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
Mod:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt
Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
*/
// VVV
TE <TY INT,INT val_limit,int LE_max = val_limit>CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration
    ();CE CO INT& OP[](CRI n) CO;CE CO INT& Get(CRI n) CO;CE CO bool& IsComposite(CRI i) CO;CE CRI LE() CO NE;};
TE <TY INT,INT val_limit,int LE_max>CE PrimeEnumeration<INT,val_limit,LE_max>::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i <
    val_limit;i++){if(! m_is_composite[i]){INT j = i;WH((j += i)< val_limit){m_is_composite[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break
    ;}}}}TE <TY INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::OP[](CRI n)CO{assert(n < m_LE);RE m_val[n];}TE <TY
    INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::Get(CRI n)CO{RE OP[](n);}TE <TY INT,INT val_limit,int LE_max> CE
    CO bool& PrimeEnumeration<INT,val_limit,LE_max>::IsComposite(CRI i)CO{assert(i < val_limit);RE m_is_composite[i];}TE <TY INT,INT val_limit,int
    LE_max> CE CRI PrimeEnumeration<INT,val_limit,LE_max>::LE()CO NE{RE m_LE;}
TE <TY INT,INT val_limit,int LE_max>VO SetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT& n,VE<INT>& P,VE<INT>& EX){INT
    n_copy = n;int i = 0;WH(i < prime.m_LE){CO INT& p = prime[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P.push_back(p);EX.push_back(1);INT&
    EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back(n_copy);EX.push_back(1);}RE;}
TE <TY INT,INT val_limit,int LE_max>INT CountDivisor(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n) NE{VE<INT> P{};VE<INT> EX{}
    ;SetPrimeFactorisation(prime,n,P,EX);P.clear();CO int LE = EX.SZ();INT AN = 1;for(int i = 0;i < LE;i++){AN *= EX[i] + 1;}RE AN;}
TE <TY INT,INT val_limit,int LE_max>LI<INT> EnumerateDivisor(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n) NE{VE<INT> P{};VE<INT> EX{}
    ;SetPrimeFactorisation(prime,n,P,EX);CO int LE = P.SZ();LI<INT> divisor{};divisor.push_back(1);auto BE = divisor.BE(),EN = divisor.EN();for(int i
    = 0;i < LE;i++){CO INT& P_i = P[i];CRI EX_i = EX[i];LI<INT> temp{};INT PW = 1;for(int e = 1;e <= EX_i;e++){PW *= P_i;for(auto IT = BE;IT != EN;IT
    ++){temp.push_back(*IT * PW);}}WH(! temp.empty()){divisor.push_back(temp.front());temp.pop_front();}}RE divisor;}
TE <int SZ_max> VO MemoriseEnumerateDivisor(LI<int>(&memory)[SZ_max])NE{for(int d = 1;d < SZ_max;d++){int n = 0;WH((n += d)< SZ_max){memory[n]
    .push_back(d);}}RE;}
TE <TY INT,INT val_limit,int LE_max>int MoeviusFunction(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n)NE{int AN = 1;int i = 0;WH(i < prime
    .m_LE && n > 1){CRI p = prime[i++];if(n % p == 0){if((n /= p)% p == 0){RE 0;}AN *= -1;}}RE n == 1?AN:AN *= -1;}
// AAA
template <typename path_type> list<path_type> E( const int& i )
{
// list<path_type> answer{};
list<path_type> answer = e<path_type>[i];
// VVV
// AAA
return answer;
}
ll Guchoku( int N , int M , int K )
{
ll answer = 0;
ll A[N];
FOR( d , 0 , N ){
A[d] = 1;
}
ll prod[N] = { 1 };
FOR( d , 1 , N ){
prod[d] = prod[d-1] * K % M;
}
POWER( power , ll( M - 1 ) , N );
REPEAT( power ){
ll sum = 0;
FOR( d , 0 , N ){
sum += A[d] * prod[d];
}
sum % M == 0 ? ++answer : answer;
FOR( d , 0 , N ){
if( ++A[d] == M ){
A[d] = 1;
} else {
break;
}
}
}
return answer;
}
ll Answer( int N , int M , int K )
{
if( N == 1 ){
return 0;
}
CEXPR( ll , P , 998244353 );
constexpr PrimeEnumeration<int,31622> pe{};
vector<int> prime;
vector<int> exponent;
SetPrimeFactorisation( pe , M , prime , exponent );
int size = prime.size();
int e_max = 0;
FOR( i , 0 , size ){
e_max = max( e_max , exponent[i] );
}
ll K_div[e_max+2];
FOREQ( j , 0 , e_max ){
K_div[j] = 1;
}
K_div[e_max+1] = M;
FOR( i , 0 , size ){
int d = 0;
while( K % prime[i] == 0 ){
K /= prime[i];
d++;
}
int d_mul = 0;
ll power = 1;
FOREQ( j , 1 , e_max ){
int d_mul_new = min( d * j , exponent[i] );
FOR( k , d_mul , d_mul_new ){
power *= prime[i];
}
K_div[j] *= power;
d_mul = d_mul_new;
}
}
ll K_dif[e_max+2] = { K_div[0] };
FOREQ( j , 1 , e_max + 1 ){
K_dif[j] = K_div[j] - K_div[j-1];
}
ll dp[2][e_max+2];
dp[0][0] = 0;
FOREQ( j , 1 , e_max + 1 ){
dp[0][j] = K_dif[j];
}
int i_prev = 0;
int i_curr = 1;
N -= 2;
REPEAT( N ){
auto& dp_curr = dp[i_curr];
FOREQ( j , 0 , e_max + 1 ){
dp_curr[j] = 0;
}
auto& dp_prev = dp[i_prev];
ll sum = 0;
FOREQ( k , 0 , e_max + 1 ){
( sum += dp_prev[k] ) < P ? sum : sum -= P;
}
FOREQ( j , 0 , e_max + 1 ){
dp_curr[j] += sum * K_dif[j];
if( j == 0 ){
dp_curr[j] -= dp_prev[0];
}
if( j < e_max ){
dp_curr[j] -= dp_prev[j+1];
} else if( j == e_max + 1 ){
dp_curr[j] -= dp_prev[j];
}
( dp_curr[j] %= P ) < 0 ? dp_curr[j] += P : 0;
}
swap( i_curr , i_prev );
}
ll answer = 0;
FOREQ( j , 2 , e_max + 1 ){
answer += dp[i_prev][j];
}
( answer %= P ) < 0 ? answer += P : answer;
return answer;
}
int main()
{
UNTIE;
AUTO_CHECK;
// START_WATCH;
TEST_CASE_NUM( 1 );
START_MAIN;
// //
// CEXPR( ll , P , 998244353 );
// // CEXPR( ll , P , 1000000007 ); // Mod<P>使P2
// // 使N
DEXPR( int , bound_N , 1000000000 , 1000 ); // 05
// // CEXPR( int , bound_N , 1000000000 ); // 09
// // CEXPR( ll , bound_N , 1000000000000000000 ); // 018
// // 使M
// // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );
DEXPR( int , bound_M , 1000000000 , 1000 ); // 05
// // CEXPR( int , bound_M , 1000000000 ); // 09
// // CEXPR( ll , bound_M , 1000000000000000000 ); // 018
DEXPR( int , bound_K , 1000000000 , 1000 ); // 05
// //
// CIN( ll , N );
// CIN( ll , M );
// CIN( int , N , M , K );
CIN_ASSERT( N , 1 , bound_N ); // 10^5
CIN_ASSERT( M , 1 , bound_M ); // 10^5
CIN_ASSERT( K , 1 , bound_K ); // 10^5
// //
// CIN( string , S );
// CIN( string , T );
// //
// CIN_A( ll , A , N );
// // CIN_A( ll , B , N );
// // ll A[N];
// // ll B[N];
// // ll A[bound_N]; // 使10^5
// // ll B[bound_N]; // 使10^5
// // FOR( i , 0 , N ){
// // cin >> A[i] >> B[i];
// // }
// //
// int P[N];
// int P_inv[N];
// FOR( i , 0 , N ){
// cin >> P[i];
// P_inv[--P[i]] = i;
// }
// //
// FOR( j , 0 , M ){
// CIN_ASSERT( uj , 1 , N );
// CIN_ASSERT( vj , 1 , N );
// uj--;
// vj--;
// e<int>[uj].push_back( vj );
// e<int>[vj].push_back( uj );
// // CIN( ll , wj );
// // e<path>[uj].push_back( { vj , wj } );
// // e<path>[vj].push_back( { uj , wj } );
// }
// //
// T3<ll> data[M];
// FOR( j , 0 , M ){
// CIN( ll , x , y , z );
// data[j] = { x , y , z };
// }
// //
// CIN( int , Q );
// // DEXPR( int , bound_Q , 100000 , 100 ); //
// // CIN_ASSERT( Q , 1 , bound_Q ); //
// // T3<int> query[Q];
// // T2<int> query[Q];
// FOR( q , 0 , Q ){
// CIN( int , type );
// if( type == 1 ){
// CIN( int , x , y );
// // query[q] = { type , x , y };
// } else if( type == 2 ){
// CIN( int , x , y );
// // query[q] = { type , x , y };
// } else {
// CIN( int , x , y );
// // query[q] = { type , x , y };
// }
// // CIN( int , x , y );
// // // query[q] = { x , y };
// }
// // sort( query , query + Q );
// // FOR( q , 0 , Q ){
// // auto& [x,y] = query[q];
// // // auto& [type,x,y] = query[q];
// // }
// // 使H,W
// DEXPR( int , bound_H , 1000 , 20 );
// // DEXPR( int , bound_H , 100000 , 10 ); // 05
// // CEXPR( int , bound_H , 1000000000 ); // 09
// CEXPR( int , bound_W , bound_H );
// static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );
// CEXPR( int , bound_HW , bound_H * bound_W );
// // CEXPR( int , bound_HW , 100000 ); // 05
// // CEXPR( int , bound_HW , 1000000 ); // 06
// //
// cin >> H >> W;
// // SET_ASSERT( H , 1 , bound_H ); // 10^3
// // SET_ASSERT( W , 1 , bound_W ); // 10^3
// H_minus = H - 1;
// W_minus = W - 1;
// HW = H * W;
// // assert( HW <= bound_HW ); // 10^6
// string S[H];
// // bool non_wall[H+1][W+1]={};
// FOR( i , 0 , H ){
// cin >> S[i];
// // SetEdgeOnGrid( S[i] , i , e<int> );
// // SetWallOnGrid( S[i] , i , non_wall[i] );
// }
// // {h,w}: EnumHW( v )
// // {h,w}: EnumHW_inv( h , w );
// // (i,j)->(k,h): DirectionNumberOnGrid( i , j , k , h );
// // v->w: DirectionNumberOnGrid( v , w );
// // U<->DR<->L: ReverseDirectionNumberOnGrid( n );
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
// //
// auto guchoku = Guchoku( N , M , K );
ll answer = Answer( N , M , K );
// // MP answer{};
// FOR( i , 0 , N ){
// answer += A[i];
// }
RETURN( answer );
// // COUT( answer );
// // COUT_A( A , N );
FINISH_MAIN;
}
void Jikken()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 1 , bound ){
// FOREQ( M , 2 , bound ){
// FOREQ( K , 1 , bound ){
// COUT( N , M , K , ":" , Guchoku( N , M , K ) );
// }
// }
// // cout << Guchoku( N ) << ",\n"[N==bound];
// }
}
void Debug()
{
CEXPR( int , bound , 10 );
FOREQ( N , 1 , bound ){
FOREQ( M , 2 , bound ){
FOREQ( K , 1 , bound ){
auto guchoku = Guchoku( N , M , K );
auto answer = Answer( N , M , K );
bool match = guchoku == answer;
COUT( N , M , K , ":" , guchoku , match ? "==" : "!=" , answer );
if( !match ){
return;
}
}
}
// auto guchoku = Guchoku( N );
// auto answer = Answer( N );
// bool match = guchoku == answer;
// COUT( N , ":" , guchoku , match ? "==" : "!=" , answer );
// if( !match ){
// return;
// }
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0