結果
問題 | No.2487 Multiple of M |
ユーザー |
👑 |
提出日時 | 2023-09-30 10:19:25 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 28,483 bytes |
コンパイル時間 | 11,425 ms |
コンパイル使用メモリ | 294,348 KB |
最終ジャッジ日時 | 2025-02-17 03:46:24 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | TLE * 1 -- * 52 |
ソースコード
#ifdef DEBUG#define _GLIBCXX_DEBUG#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl#define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl#define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl#define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )); assert( ( MIN ) <= A && A <= ( MAX ) )#define AUTO_CHECK int auto_checked; AutoCheck( auto_checked ); if( auto_checked == 3 ){ Jikken(); return 0; } else if( auto_checked == 4 ){ Debug(); return 0; } else if( auto_checked != 0 ){ return 0; };#else#pragma GCC optimize ( "O3" )#pragma GCC optimize ( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )#define CERR( ... )#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"#define CERR_A( A , N )#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"#define CERR_ITR( A )#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define AUTO_CHECK#endif#include <bits/stdc++.h>using namespace std;using uint = unsigned int;using ll = long long;using ull = unsigned long long;using ld = long double;using lld = __float128;template <typename INT> using T2 = pair<INT,INT>;template <typename INT> using T3 = tuple<INT,INT,INT>;template <typename INT> using T4 = tuple<INT,INT,INT,INT>;using path = pair<int,ll>;// #define RANDOM_TEST#if defined( DEBUG ) && defined( RANDOM_TEST )ll GetRand( const ll& Rand_min , const ll& Rand_max );#define SET_ASSERT( A , MIN , MAX ) CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) )#define CIN( LL , ... ) LL __VA_ARGS__; static_assert( false )#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = bound_T; static_assert( bound_T > 1 )#define RETURN( ANSWER ) if( ( ANSWER ) == guchoku ){ CERR( ANSWER , "==" , guchoku ); goto END_MAIN; } else { CERR( ANSWER , "!=" , guchoku );return 0; }#else#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )#define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )#define TEST_CASE_NUM( BOUND ) DEXPR( int , bound_T , BOUND , min( BOUND , 100 ) ); int T = 1; if constexpr( bound_T > 1 ){ SET_ASSERT( T , 1 ,bound_T ); }#define RETURN( ANSWER ) COUT( ANSWER ); QUIT#endif#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define TYPE_OF( VAR ) decay_t<decltype( VAR )>#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )#define CIN_A( LL , A , N ) LL A[N]; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }#define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )#define GETLINE( ... ) GETLINE_SEPARATE( " " , ... )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR =ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS#define QUIT goto END_MAIN#define START_MAIN REPEAT( T ){ { if constexpr( bound_T > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_T , ":" ); }#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )#define FINISH_MAIN QUIT; } END_MAIN: CERR( "" ); }// 入出力用関数template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,ARGS&... args ) { return VariadicCin( is >> arg , args... ); }template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , constchar& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os<< arg; }template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }// 算術用関数template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); }inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); }inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); }inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); }#define POWER( ANSWER , ARGUMENT , EXPONENT ) \static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \{ \TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \} \ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ll ANSWER{ 1 }; \{ \ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \} \ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \static ll ANSWER[CONSTEXPR_LENGTH]; \static ll ANSWER_INV[CONSTEXPR_LENGTH]; \static ll INVERSE[CONSTEXPR_LENGTH]; \{ \ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \FOREQ( i , 1 , MAX_INDEX ){ \ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \} \ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \FOREQ( i , 2 , MAX_INDEX ){ \ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (MODULO ) ) ) %= ( MODULO ); \} \} \// 二分探索テンプレート// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \ll ANSWER = MINIMUM; \if( MINIMUM <= MAXIMUM ){ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" <<TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \} else { \VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \} \ANSWER = UPDATE_ANSWER; \} \CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << (EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \CERR( "二分探索成功" ); \} else { \CERR( "二分探索失敗" ); \ANSWER = MAXIMUM + 1; \} \} else { \CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM ); \ANSWER = MAXIMUM + 1; \} \// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;} auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }// データ構造用関数template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }template <typename T> inline T xor_add( const T& t0 , const T& t1 ){ return t0 ^ t1; }template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }template <typename T> inline const T& zero() { static const T z = 0; return z; }template <typename T> inline const T& one() { static const T o = 1; return o; }\template <typename T> inline T add_inv( const T& t ) { return -t; }template <typename T> inline T id( const T& v ) { return v; }// グリッド問題用関数int H , W , H_minus , W_minus , HW;inline pair<int,int> EnumHW( const int& v ) { return { v / W , v % W }; }inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }const string direction[4] = {"U","R","D","L"};// (i,j)->(k,h)の方向番号を取得inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}// v->wの方向番号を取得inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}// 方向番号の反転U<->D、R<->Linline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v =EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}inline void SetEdgeOnGrid( const string& Si , const int& i , list<pair<int,ll> > ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}inline void SetWallOnGrid( const string& Si , const int& i , bool ( &non_wall_i )[] , const char& walkable = '.' , const char& unwalkable = '#'){FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}// グラフ用関数template <typename path_type> list<path_type> E( const int& i ); // 本体をmain()の後に定義template <typename path_type> vector<list<path_type> > e;// デバッグ用関数#ifdef DEBUGinline void AlertAbort( int n ) { CERR("abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }void AutoCheck( int& auto_checked );void Jikken();void Debug();#endif// 圧縮用#define TE template#define TY typename#define US using#define ST static#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&/*C-x 3 C-x o C-x C-fによるファイル操作用BIT:c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txtBFS:c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txtDFS on Tree:c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepththFirstSearch/Tree/compress.txtDivisor:c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txtMod:c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txtPolynomialc:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt*/// VVV ライブラリは以下に挿入する。TE <TY INT,INT val_limit,int LE_max = val_limit>CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration();CE CO INT& OP[](CRI n) CO;CE CO INT& Get(CRI n) CO;CE CO bool& IsComposite(CRI i) CO;CE CRI LE() CO NE;};TE <TY INT,INT val_limit,int LE_max>CE PrimeEnumeration<INT,val_limit,LE_max>::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i <val_limit;i++){if(! m_is_composite[i]){INT j = i;WH((j += i)< val_limit){m_is_composite[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break;}}}}TE <TY INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::OP[](CRI n)CO{assert(n < m_LE);RE m_val[n];}TE <TYINT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::Get(CRI n)CO{RE OP[](n);}TE <TY INT,INT val_limit,int LE_max> CECO bool& PrimeEnumeration<INT,val_limit,LE_max>::IsComposite(CRI i)CO{assert(i < val_limit);RE m_is_composite[i];}TE <TY INT,INT val_limit,intLE_max> CE CRI PrimeEnumeration<INT,val_limit,LE_max>::LE()CO NE{RE m_LE;}TE <TY INT,INT val_limit,int LE_max>VO SetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT& n,VE<INT>& P,VE<INT>& EX){INTn_copy = n;int i = 0;WH(i < prime.m_LE){CO INT& p = prime[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P.push_back(p);EX.push_back(1);INT&EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back(n_copy);EX.push_back(1);}RE;}TE <TY INT,INT val_limit,int LE_max>INT CountDivisor(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n) NE{VE<INT> P{};VE<INT> EX{};SetPrimeFactorisation(prime,n,P,EX);P.clear();CO int LE = EX.SZ();INT AN = 1;for(int i = 0;i < LE;i++){AN *= EX[i] + 1;}RE AN;}TE <TY INT,INT val_limit,int LE_max>LI<INT> EnumerateDivisor(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n) NE{VE<INT> P{};VE<INT> EX{};SetPrimeFactorisation(prime,n,P,EX);CO int LE = P.SZ();LI<INT> divisor{};divisor.push_back(1);auto BE = divisor.BE(),EN = divisor.EN();for(int i= 0;i < LE;i++){CO INT& P_i = P[i];CRI EX_i = EX[i];LI<INT> temp{};INT PW = 1;for(int e = 1;e <= EX_i;e++){PW *= P_i;for(auto IT = BE;IT != EN;IT++){temp.push_back(*IT * PW);}}WH(! temp.empty()){divisor.push_back(temp.front());temp.pop_front();}}RE divisor;}TE <int SZ_max> VO MemoriseEnumerateDivisor(LI<int>(&memory)[SZ_max])NE{for(int d = 1;d < SZ_max;d++){int n = 0;WH((n += d)< SZ_max){memory[n].push_back(d);}}RE;}TE <TY INT,INT val_limit,int LE_max>int MoeviusFunction(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,INT n)NE{int AN = 1;int i = 0;WH(i < prime.m_LE && n > 1){CRI p = prime[i++];if(n % p == 0){if((n /= p)% p == 0){RE 0;}AN *= -1;}}RE n == 1?AN:AN *= -1;}// AAA ライブラリは以上に挿入する。template <typename path_type> list<path_type> E( const int& i ){// list<path_type> answer{};list<path_type> answer = e<path_type>[i];// VVV 入力によらない処理は以下に挿入する。// AAA 入力によらない処理は以上に挿入する。return answer;}ll Guchoku( int N , int M , int K ){ll answer = 0;ll A[N];FOR( d , 0 , N ){A[d] = 1;}ll prod[N] = { 1 };FOR( d , 1 , N ){prod[d] = prod[d-1] * K % M;}POWER( power , ll( M - 1 ) , N );REPEAT( power ){ll sum = 0;FOR( d , 0 , N ){sum += A[d] * prod[d];}sum % M == 0 ? ++answer : answer;FOR( d , 0 , N ){if( ++A[d] == M ){A[d] = 1;} else {break;}}}return answer;}ll Answer( int N , int M , int K ){if( N == 1 ){return 0;}CEXPR( ll , P , 998244353 );constexpr PrimeEnumeration<int,31622> pe{};vector<int> prime;vector<int> exponent;SetPrimeFactorisation( pe , M , prime , exponent );int size = prime.size();int e_max = 0;FOR( i , 0 , size ){e_max = max( e_max , exponent[i] );}ll K_div[e_max+2];FOREQ( j , 0 , e_max ){K_div[j] = 1;}K_div[e_max+1] = M;FOR( i , 0 , size ){int d = 0;while( K % prime[i] == 0 ){K /= prime[i];d++;}int d_mul = 0;ll power = 1;FOREQ( j , 1 , e_max ){int d_mul_new = min( d * j , exponent[i] );FOR( k , d_mul , d_mul_new ){power *= prime[i];}K_div[j] *= power;d_mul = d_mul_new;}}ll K_dif[e_max+2] = { K_div[0] };FOREQ( j , 1 , e_max + 1 ){K_dif[j] = K_div[j] - K_div[j-1];}ll dp[2][e_max+2];dp[0][0] = 0;FOREQ( j , 1 , e_max + 1 ){dp[0][j] = K_dif[j];}int i_prev = 0;int i_curr = 1;N -= 2;REPEAT( N ){auto& dp_curr = dp[i_curr];FOREQ( j , 0 , e_max + 1 ){dp_curr[j] = 0;}auto& dp_prev = dp[i_prev];ll sum = 0;FOREQ( k , 0 , e_max + 1 ){( sum += dp_prev[k] ) < P ? sum : sum -= P;}FOREQ( j , 0 , e_max + 1 ){dp_curr[j] += sum * K_dif[j];if( j == 0 ){dp_curr[j] -= dp_prev[0];}if( j < e_max ){dp_curr[j] -= dp_prev[j+1];} else if( j == e_max + 1 ){dp_curr[j] -= dp_prev[j];}( dp_curr[j] %= P ) < 0 ? dp_curr[j] += P : 0;}swap( i_curr , i_prev );}ll answer = 0;FOREQ( j , 2 , e_max + 1 ){answer += dp[i_prev][j];}( answer %= P ) < 0 ? answer += P : answer;return answer;}int main(){UNTIE;AUTO_CHECK;// START_WATCH;TEST_CASE_NUM( 1 );START_MAIN;// // 大きな素数// CEXPR( ll , P , 998244353 );// // CEXPR( ll , P , 1000000007 ); // Mod<P>を使う時はP2に変更。// // データ構造使用畤のNの上限DEXPR( int , bound_N , 1000000000 , 1000 ); // 0が5個// // CEXPR( int , bound_N , 1000000000 ); // 0が9個// // CEXPR( ll , bound_N , 1000000000000000000 ); // 0が18個// // データ構造使用畤のMの上限// // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );DEXPR( int , bound_M , 1000000000 , 1000 ); // 0が5個// // CEXPR( int , bound_M , 1000000000 ); // 0が9個// // CEXPR( ll , bound_M , 1000000000000000000 ); // 0が18個DEXPR( int , bound_K , 1000000000 , 1000 ); // 0が5個// // 数// CIN( ll , N );// CIN( ll , M );// CIN( int , N , M , K );CIN_ASSERT( N , 1 , bound_N ); // ランダムテスト用。上限のデフォルト値は10^5。CIN_ASSERT( M , 1 , bound_M ); // ランダムテスト用。上限のデフォルト値は10^5。CIN_ASSERT( K , 1 , bound_K ); // ランダムテスト用。上限のデフォルト値は10^5。// // 文字列// CIN( string , S );// CIN( string , T );// // 配列// CIN_A( ll , A , N );// // CIN_A( ll , B , N );// // ll A[N];// // ll B[N];// // ll A[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。// // ll B[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。// // FOR( i , 0 , N ){// // cin >> A[i] >> B[i];// // }// // 順列// int P[N];// int P_inv[N];// FOR( i , 0 , N ){// cin >> P[i];// P_inv[--P[i]] = i;// }// // グラフ// FOR( j , 0 , M ){// CIN_ASSERT( uj , 1 , N );// CIN_ASSERT( vj , 1 , N );// uj--;// vj--;// e<int>[uj].push_back( vj );// e<int>[vj].push_back( uj );// // CIN( ll , wj );// // e<path>[uj].push_back( { vj , wj } );// // e<path>[vj].push_back( { uj , wj } );// }// // 座標圧縮や単一クエリタイプなどのための入力格納// T3<ll> data[M];// FOR( j , 0 , M ){// CIN( ll , x , y , z );// data[j] = { x , y , z };// }// // 一般のクエリ// CIN( int , Q );// // DEXPR( int , bound_Q , 100000 , 100 ); // 基本不要。// // CIN_ASSERT( Q , 1 , bound_Q ); // 基本不要。// // T3<int> query[Q];// // T2<int> query[Q];// FOR( q , 0 , Q ){// CIN( int , type );// if( type == 1 ){// CIN( int , x , y );// // query[q] = { type , x , y };// } else if( type == 2 ){// CIN( int , x , y );// // query[q] = { type , x , y };// } else {// CIN( int , x , y );// // query[q] = { type , x , y };// }// // CIN( int , x , y );// // // query[q] = { x , y };// }// // sort( query , query + Q );// // FOR( q , 0 , Q ){// // auto& [x,y] = query[q];// // // auto& [type,x,y] = query[q];// // }// // データ構造や壁配列使用畤のH,Wの上限// DEXPR( int , bound_H , 1000 , 20 );// // DEXPR( int , bound_H , 100000 , 10 ); // 0が5個// // CEXPR( int , bound_H , 1000000000 ); // 0が9個// CEXPR( int , bound_W , bound_H );// static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );// CEXPR( int , bound_HW , bound_H * bound_W );// // CEXPR( int , bound_HW , 100000 ); // 0が5個// // CEXPR( int , bound_HW , 1000000 ); // 0が6個// // グリッド// cin >> H >> W;// // SET_ASSERT( H , 1 , bound_H ); // ランダムテスト用。上限のデフォルト値は10^3。// // SET_ASSERT( W , 1 , bound_W ); // ランダムテスト用。上限のデフォルト値は10^3。// H_minus = H - 1;// W_minus = W - 1;// HW = H * W;// // assert( HW <= bound_HW ); // 基本不要。上限のデフォルト値は10^6。// string S[H];// // bool non_wall[H+1][W+1]={};// FOR( i , 0 , H ){// cin >> S[i];// // SetEdgeOnGrid( S[i] , i , e<int> );// // SetWallOnGrid( S[i] , i , non_wall[i] );// }// // {h,w}へデコード: EnumHW( v )// // {h,w}をコード: EnumHW_inv( h , w );// // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h );// // v->wの方向番号を取得: DirectionNumberOnGrid( v , w );// // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n );// // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。// CEXPR( double , TL , 2000.0 );// while( CHECK_WATCH( TL ) ){// }// // ランダムテスト用の愚直解// auto guchoku = Guchoku( N , M , K );ll answer = Answer( N , M , K );// // MP answer{};// FOR( i , 0 , N ){// answer += A[i];// }RETURN( answer );// // COUT( answer );// // COUT_A( A , N );FINISH_MAIN;}void Jikken(){// CEXPR( int , bound , 10 );// FOREQ( N , 1 , bound ){// FOREQ( M , 2 , bound ){// FOREQ( K , 1 , bound ){// COUT( N , M , K , ":" , Guchoku( N , M , K ) );// }// }// // cout << Guchoku( N ) << ",\n"[N==bound];// }}void Debug(){CEXPR( int , bound , 10 );FOREQ( N , 1 , bound ){FOREQ( M , 2 , bound ){FOREQ( K , 1 , bound ){auto guchoku = Guchoku( N , M , K );auto answer = Answer( N , M , K );bool match = guchoku == answer;COUT( N , M , K , ":" , guchoku , match ? "==" : "!=" , answer );if( !match ){return;}}}// auto guchoku = Guchoku( N );// auto answer = Answer( N );// bool match = guchoku == answer;// COUT( N , ":" , guchoku , match ? "==" : "!=" , answer );// if( !match ){// return;// }}}