結果
問題 | No.2485 Add to Variables (Another) |
ユーザー |
|
提出日時 | 2023-09-30 23:25:08 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 184 ms / 2,000 ms |
コード長 | 12,141 bytes |
コンパイル時間 | 14,053 ms |
コンパイル使用メモリ | 387,540 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-23 17:05:24 |
合計ジャッジ時間 | 19,138 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 39 |
ソースコード
use std::cmp::*;// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Depends on MInt.rsfn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {let mut fac = vec![MInt::new(1); w];let mut invfac = vec![0.into(); w];for i in 1..w {fac[i] = fac[i - 1] * i as i64;}invfac[w - 1] = fac[w - 1].inv();for i in (0..w - 1).rev() {invfac[i] = invfac[i + 1] * (i as i64 + 1);}(fac, invfac)}// FFT (in-place, verified as NTT only)// R: Ring + Copy// Verified by: https://judge.yosupo.jp/submission/53831// Adopts the technique used in https://judge.yosupo.jp/submission/3153.mod fft {use std::ops::*;// n should be a power of 2. zeta is a primitive n-th root of unity.// one is unity// Note that the result is bit-reversed.pub fn fft<R>(f: &mut [R], zeta: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let mut m = n;let mut base = zeta;unsafe {while m > 2 {m >>= 1;let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m);*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = w * (u - d);w = w * base;}r += 2 * m;}base = base * base;}if m > 1 {// m = 1let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}}}}pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)where R: Copy +Add<Output = R> +Sub<Output = R> +Mul<Output = R> {let n = f.len();assert!(n.is_power_of_two());let zeta = zeta_inv; // inverse FFTlet mut zetapow = Vec::with_capacity(20);{let mut m = 1;let mut cur = zeta;while m < n {zetapow.push(cur);cur = cur * cur;m *= 2;}}let mut m = 1;unsafe {if m < n {zetapow.pop();let mut r = 0;while r < n {let &u = f.get_unchecked(r);let d = *f.get_unchecked(r + 1);*f.get_unchecked_mut(r) = u + d;*f.get_unchecked_mut(r + 1) = u - d;r += 2;}m = 2;}while m < n {let base = zetapow.pop().unwrap();let mut r = 0;while r < n {let mut w = one;for s in r..r + m {let &u = f.get_unchecked(s);let d = *f.get_unchecked(s + m) * w;*f.get_unchecked_mut(s) = u + d;*f.get_unchecked_mut(s + m) = u - d;w = w * base;}r += 2 * m;}m *= 2;}}}}// Depends on: fft.rs, MInt.rs// Verified by: ABC269-Ex (https://atcoder.jp/contests/abc269/submissions/39116328)pub struct FPSOps<M: mod_int::Mod> {gen: mod_int::ModInt<M>,}impl<M: mod_int::Mod> FPSOps<M> {pub fn new(gen: mod_int::ModInt<M>) -> Self {FPSOps { gen: gen }}}impl<M: mod_int::Mod> FPSOps<M> {pub fn add(&self, mut a: Vec<mod_int::ModInt<M>>, mut b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {if a.len() < b.len() {std::mem::swap(&mut a, &mut b);}for i in 0..b.len() {a[i] += b[i];}a}pub fn mul(&self, a: Vec<mod_int::ModInt<M>>, b: Vec<mod_int::ModInt<M>>) -> Vec<mod_int::ModInt<M>> {type MInt<M> = mod_int::ModInt<M>;let n = a.len() - 1;let m = b.len() - 1;let mut p = 1;while p <= n + m { p *= 2; }let mut f = vec![MInt::new(0); p];let mut g = vec![MInt::new(0); p];for i in 0..n + 1 { f[i] = a[i]; }for i in 0..m + 1 { g[i] = b[i]; }let fac = MInt::new(p as i64).inv();let zeta = self.gen.pow((M::m() - 1) / p as i64);fft::fft(&mut f, zeta, 1.into());fft::fft(&mut g, zeta, 1.into());for i in 0..p { f[i] *= g[i] * fac; }fft::inv_fft(&mut f, zeta.inv(), 1.into());f.truncate(n + m + 1);f}}// https://yukicoder.me/problems/no/2484 (3.5)// 操作をそれぞれ S, T_{k+1}, U_{k+1}, V と名付ける。T_k U_{k+1} と SV は同じ結果をもたらすが、それ以外はほとんど自由度がなく 1 通りに定まる。// c[i] = B[i+1]-B[i] (i >= 1), c[0] = B[1] とすると、各操作は以下のようになる:// S: なにもしない// T_{k+1}: 0 番目を +1, k+1 番目を -1 する (0 <= k <= N-2)// U_{k+1}: k 番目を +1 する (1 <= k <= N-1)// V: 0 番目を +1 する// 最終的にすべてゼロの配列を操作によって c と等しくできればよい。// c[0] + sum_{i>=1} min(c[i], 0) < 0 であれば不可能なので 0 通り。// そうでないとき、T_? と U_? の必須回数、および追加で必要な V の回数は簡単に求められる。// V を何個 T_1 U_2, T_2 U_3, T_3 U_4 にするかを全探索すれば、それぞれに対して組み合わせの和を計算すれば良い。// これは畳み込みでできる。fn main() {input! {n: usize, m: usize,b: [i64; n],}let (fac, invfac) = fact_init(m + 1);let mut c = vec![0; n];c[0] = b[0];for i in 1..n {c[i] = b[i] - b[i - 1];}let mut negsum = 0;let mut possum = 0;for i in 1..n {negsum += min(0, c[i]);possum += max(0, c[i]);}if negsum + c[0] < 0 {println!("0");return;}// Rules out e.g. m m-1 mif possum + c[0] > m as i64 {println!("0");return;}let rest = m - (possum + c[0]) as usize;let t = (c[0] + negsum) as usize;let mut prod = vec![MInt::new(1)];let fps = FPSOps::new(MInt::new(3));for i in 1..n {let mut a = vec![MInt::new(0); m + 1];let x = c[i].abs() as usize;for j in 0..m + 1 {if 2 * j + x <= m {a[2 * j + x] += invfac[j + x] * invfac[j];}}prod = fps.mul(prod, a);prod.truncate(m + 1);}let mut a = vec![MInt::new(0); m + 1];for j in 0..min(t, rest) + 1 {if t - j + rest - j <= m {a[t - j + rest - j] += invfac[t - j] * invfac[rest - j];}}prod = fps.mul(prod, a);prod.truncate(m + 1);println!("{}", prod[m] * fac[m]);}