結果

問題 No.2498 OX Operations
ユーザー KumaTachiRenKumaTachiRen
提出日時 2023-10-05 09:59:16
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 2,898 ms / 4,000 ms
コード長 3,459 bytes
コンパイル時間 342 ms
コンパイル使用メモリ 82,048 KB
実行使用メモリ 102,272 KB
最終ジャッジ日時 2024-07-26 14:59:53
合計ジャッジ時間 27,889 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 46 ms
59,904 KB
testcase_01 AC 46 ms
59,904 KB
testcase_02 AC 49 ms
61,568 KB
testcase_03 AC 48 ms
61,696 KB
testcase_04 AC 51 ms
61,952 KB
testcase_05 AC 49 ms
61,696 KB
testcase_06 AC 47 ms
61,184 KB
testcase_07 AC 50 ms
62,336 KB
testcase_08 AC 56 ms
64,976 KB
testcase_09 AC 48 ms
61,696 KB
testcase_10 AC 48 ms
62,592 KB
testcase_11 AC 104 ms
76,620 KB
testcase_12 AC 134 ms
77,352 KB
testcase_13 AC 127 ms
77,612 KB
testcase_14 AC 134 ms
77,292 KB
testcase_15 AC 1,932 ms
91,576 KB
testcase_16 AC 1,906 ms
99,788 KB
testcase_17 AC 1,765 ms
89,216 KB
testcase_18 AC 2,059 ms
94,872 KB
testcase_19 AC 2,216 ms
92,672 KB
testcase_20 AC 2,346 ms
96,212 KB
testcase_21 AC 2,512 ms
101,300 KB
testcase_22 AC 950 ms
90,184 KB
testcase_23 AC 733 ms
87,856 KB
testcase_24 AC 2,898 ms
101,628 KB
testcase_25 AC 2,186 ms
102,272 KB
testcase_26 AC 2,539 ms
101,684 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys


def popcount(n):
    c = (n & 0x5555555555555555) + ((n >> 1) & 0x5555555555555555)
    c = (c & 0x3333333333333333) + ((c >> 2) & 0x3333333333333333)
    c = (c & 0x0F0F0F0F0F0F0F0F) + ((c >> 4) & 0x0F0F0F0F0F0F0F0F)
    c = (c & 0x00FF00FF00FF00FF) + ((c >> 8) & 0x00FF00FF00FF00FF)
    c = (c & 0x0000FFFF0000FFFF) + ((c >> 16) & 0x0000FFFF0000FFFF)
    c = (c & 0x00000000FFFFFFFF) + ((c >> 32) & 0x00000000FFFFFFFF)
    return c


class DualSegTree:
    def __init__(self, n, comp, id):
        self.n = n
        self.comp = comp
        self.id = id
        self.sz = 1
        self.log = 0
        while self.sz < n:
            self.sz <<= 1
            self.log += 1
        self.lz = [id] * (self.sz * 2)

    def push(self, p):
        self.lz[p << 1] = self.comp(self.lz[p], self.lz[p << 1])
        self.lz[(p << 1) + 1] = self.comp(self.lz[p], self.lz[(p << 1) + 1])
        self.lz[p] = self.id

    def push_all(self, p):
        for i in range(self.log, 0, -1):
            self.push(p >> i)

    def get(self, p):
        P = p + self.sz
        self.push_all(P)
        return self.lz[P]

    def set(self, p, f):
        P = p + self.sz
        self.push_all(P)
        self.lz[P] = f

    def apply(self, l, r, f):
        if l >= r:
            return
        L = l + self.sz
        R = r + self.sz
        for i in range(self.log, 0, -1):
            if ((L >> i) << i) != L:
                self.push(L >> i)
            if ((R >> i) << i) != R:
                self.push((R - 1) >> i)
        while L < R:
            if L & 1:
                self.lz[L] = self.comp(f, self.lz[L])
                L += 1
            if R & 1:
                R -= 1
                self.lz[R] = self.comp(f, self.lz[R])
            L >>= 1
            R >>= 1


LOG = 30
MASK = (1 << LOG) - 1
MOD = 998244353


def comp(f, g):
    return ((~g[0] & f[0]) | (g[0] & f[1]), (~g[1] & f[0]) | (g[1] & f[1]))


id = (0, MASK)

s = input().split(" ")
n = int(s[0])
q = int(s[1])

m = list(map(int, input().split()))

seg = DualSegTree(n, comp, id)

for i in range(q):
    s = input().split(" ")
    l = int(s[1]) - 1
    r = int(s[2])
    x = int(s[3])
    seg.apply(l, r, (x, MASK if s[0] == "o" else MASK ^ x))


fact = [1] * 100
ifact = [1] * 100
for i in range(1, 100):
    fact[i] = fact[i - 1] * i % MOD
ifact[99] = pow(fact[99], MOD - 2, MOD)
for i in range(99, 0, -1):
    ifact[i - 1] = ifact[i] * i % MOD

prod = [1] * (LOG + 1)

for p in range(n):
    r = seg.get(p)
    b = r[0]
    c = r[1]
    ma = m[p] + 1

    dp = [0] * (LOG + 1)
    a = 0
    for k in range(LOG - 1, -1, -1):
        newdp = [0] * (LOG + 1)
        d = (b >> k) & 1
        for i in range(d, LOG + 1):
            newdp[i] += dp[i - d]
            if newdp[i] >= MOD:
                newdp[i] -= MOD
        d = (c >> k) & 1
        for i in range(d, LOG + 1):
            newdp[i] += dp[i - d]
            if newdp[i] >= MOD:
                newdp[i] -= MOD
        dp = newdp
        a += (b >> k) & 1
        if (ma >> k) & 1:
            dp[a] += 1
            if dp[a] >= MOD:
                dp[a] -= MOD
            a += ((c >> k) & 1) - ((b >> k) & 1)

    for i in range(LOG):
        dp[i + 1] += dp[i]
        if dp[i + 1] >= MOD:
            dp[i + 1] -= MOD
    for i in range(LOG + 1):
        prod[i] = prod[i] * dp[i] % MOD

ans = LOG * prod[LOG] % MOD
for i in range(LOG):
    ans -= prod[i]
    if ans < 0:
        ans += MOD

print(ans)
0