結果

問題 No.2498 OX Operations
ユーザー suisensuisen
提出日時 2023-10-06 22:10:30
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,171 ms / 4,000 ms
コード長 29,396 bytes
コンパイル時間 2,654 ms
コンパイル使用メモリ 221,648 KB
最終ジャッジ日時 2025-02-17 05:12:11
ジャッジサーバーID
(参考情報)
judge1 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
namespace suisen {
template <class T> bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); }
template <class T> bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); }
template <class T> constexpr int pow_m1(T n) { return -(n & 1) | 1; }
template <class T> constexpr T fld(const T x, const T y) { T q = x / y, r = x % y; return q - ((x ^ y) < 0 and (r != 0)); }
template <class T> constexpr T cld(const T x, const T y) { T q = x / y, r = x % y; return q + ((x ^ y) > 0 and (r != 0)); }
}
namespace suisen::macro {
#define IMPL_REPITER(cond) auto& begin() { return *this; } auto end() { return nullptr; } auto& operator*() { return _val; } auto& operator++() {
    return _val += _step, *this; } bool operator!=(std::nullptr_t) { return cond; }
template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> =
        nullptr> struct rep_impl {
Int _val; const Int _end, _step;
rep_impl(Int n) : rep_impl(0, n) {}
rep_impl(IntL l, Int r, IntStep step = 1) : _val(l), _end(r), _step(step) {}
IMPL_REPITER((_val < _end))
};
template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> =
        nullptr> struct rrep_impl {
Int _val; const Int _end, _step;
rrep_impl(Int n) : rrep_impl(0, n) {}
rrep_impl(IntL l, Int r) : _val(r - 1), _end(l), _step(-1) {}
rrep_impl(IntL l, Int r, IntStep step) : _val(l + fld<Int>(r - l - 1, step) * step), _end(l), _step(-step) {}
IMPL_REPITER((_val >= _end))
};
template <class Int, class IntStep = Int> struct repinf_impl {
Int _val; const Int _step;
repinf_impl(Int l, IntStep step = 1) : _val(l), _step(step) {}
IMPL_REPITER((true))
};
#undef IMPL_REPITER
}
#include <iostream>
#include <limits>
#include <type_traits>
namespace suisen {
template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;
template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };
template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std
        ::make_unsigned_t<T>>::digits; };
template <typename T> static constexpr int bitnum_v = bitnum<T>::value;
template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };
template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;
template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };
template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;
template <typename T, typename = void> struct rec_value_type { using type = T; };
template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {
using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;
template <typename T> class is_iterable {
template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;
template <typename T> class is_writable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;
template <typename T> class is_readable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;
} // namespace suisen
namespace suisen::io {
template <typename IStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::istream, std::remove_reference_t<IStream>>, std::negation
        <std::is_const<std::remove_reference_t<IStream>>>>, std::nullptr_t> = nullptr>
struct InputStream {
private:
using istream_type = std::remove_reference_t<IStream>;
IStream is;
struct { InputStream* is; template <typename T> operator T() { T e; *is >> e; return e; } } _reader{ this };
public:
template <typename IStream_> InputStream(IStream_ &&is) : is(std::move(is)) {}
template <typename IStream_> InputStream(IStream_ &is) : is(is) {}
template <typename T> InputStream& operator>>(T& e) {
if constexpr (suisen::is_readable_v<T>) is >> e; else _read(e);
return *this;
}
auto read() { return _reader; }
template <typename Head, typename... Tail>
void read(Head& head, Tail &...tails) { ((*this >> head) >> ... >> tails); }
istream_type& get_stream() { return is; }
private:
static __uint128_t _stou128(const std::string& s) {
__uint128_t ret = 0;
for (char c : s) if ('0' <= c and c <= '9') ret = 10 * ret + c - '0';
return ret;
}
static __int128_t _stoi128(const std::string& s) { return (s[0] == '-' ? -1 : +1) * _stou128(s); }
void _read(__uint128_t& v) { v = _stou128(std::string(_reader)); }
void _read(__int128_t& v) { v = _stoi128(std::string(_reader)); }
template <typename T, typename U>
void _read(std::pair<T, U>& a) { *this >> a.first >> a.second; }
template <size_t N = 0, typename ...Args>
void _read(std::tuple<Args...>& a) { if constexpr (N < sizeof...(Args)) *this >> std::get<N>(a), _read<N + 1>(a); }
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void _read(Iterable& a) { for (auto& e : a) *this >> e; }
};
template <typename IStream>
InputStream(IStream &&) -> InputStream<IStream>;
template <typename IStream>
InputStream(IStream &) -> InputStream<IStream&>;
InputStream cin{ std::cin };
auto read() { return cin.read(); }
template <typename Head, typename... Tail>
void read(Head& head, Tail &...tails) { cin.read(head, tails...); }
} // namespace suisen::io
namespace suisen { using io::read; } // namespace suisen
namespace suisen::io {
template <typename OStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::ostream, std::remove_reference_t<OStream>>, std::negation
        <std::is_const<std::remove_reference_t<OStream>>>>, std::nullptr_t> = nullptr>
struct OutputStream {
private:
using ostream_type = std::remove_reference_t<OStream>;
OStream os;
public:
template <typename OStream_> OutputStream(OStream_ &&os) : os(std::move(os)) {}
template <typename OStream_> OutputStream(OStream_ &os) : os(os) {}
template <typename T> OutputStream& operator<<(const T& e) {
if constexpr (suisen::is_writable_v<T>) os << e; else _print(e);
return *this;
}
void print() { *this << '\n'; }
template <typename Head, typename... Tail>
void print(const Head& head, const Tail &...tails) { *this << head, ((*this << ' ' << tails), ...), *this << '\n'; }
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") {
for (auto it = v.begin(); it != v.end();) if (*this << *it; ++it != v.end()) *this << sep;
*this << end;
}
ostream_type& get_stream() { return os; }
private:
void _print(__uint128_t value) {
char buffer[41], *d = std::end(buffer);
do *--d = '0' + (value % 10), value /= 10; while (value);
os.rdbuf()->sputn(d, std::end(buffer) - d);
}
void _print(__int128_t value) {
if (value < 0) *this << '-';
_print(__uint128_t(value < 0 ? -value : value));
}
template <typename T, typename U>
void _print(const std::pair<T, U>& a) { *this << a.first << ' ' << a.second; }
template <size_t N = 0, typename ...Args>
void _print(const std::tuple<Args...>& a) {
if constexpr (N < std::tuple_size_v<std::tuple<Args...>>) {
if constexpr (N) *this << ' ';
*this << std::get<N>(a), _print<N + 1>(a);
}
}
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void _print(const Iterable& a) { print_all(a, " ", ""); }
};
template <typename OStream_>
OutputStream(OStream_ &&) -> OutputStream<OStream_>;
template <typename OStream_>
OutputStream(OStream_ &) -> OutputStream<OStream_&>;
OutputStream cout{ std::cout }, cerr{ std::cerr };
template <typename... Args>
void print(const Args &... args) { cout.print(args...); }
template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void print_all(const Iterable& v, const std::string& sep = " ", const std::string& end = "\n") { cout.print_all(v, sep, end); }
} // namespace suisen::io
namespace suisen { using io::print, io::print_all; } // namespace suisen
namespace suisen {
template <class T, class ToKey, class CompKey = std::less<>, std::enable_if_t<std::conjunction_v<std::is_invocable<ToKey, T>, std::is_invocable_r
        <bool, CompKey, std::invoke_result_t<ToKey, T>, std::invoke_result_t<ToKey, T>>>, std::nullptr_t> = nullptr>
auto comparator(const ToKey& to_key, const CompKey& comp_key = std::less<>()) {
return [=](const T& x, const T& y) { return comp_key(to_key(x), to_key(y)); };
}
template <class Compare, std::enable_if_t<std::is_invocable_r_v<bool, Compare, int, int>, std::nullptr_t> = nullptr>
std::vector<int> sorted_indices(int n, const Compare& compare) {
std::vector<int> p(n);
return std::iota(p.begin(), p.end(), 0), std::sort(p.begin(), p.end(), compare), p;
}
template <class ToKey, std::enable_if_t<std::is_invocable_v<ToKey, int>, std::nullptr_t> = nullptr>
std::vector<int> sorted_indices(int n, const ToKey& to_key) { return sorted_indices(n, comparator<int>(to_key)); }
template <class T, class Comparator>
auto priority_queue_with_comparator(const Comparator& comparator) { return std::priority_queue<T, std::vector<T>, Comparator>{ comparator }; }
template <class Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr>
void sort_unique_erase(Iterable& a) { std::sort(a.begin(), a.end()), a.erase(std::unique(a.begin(), a.end()), a.end()); }
template <size_t D> struct Dim : std::array<int, D> {
template <typename ...Ints> Dim(const Ints& ...ns) : std::array<int, D>::array{ static_cast<int>(ns)... } {}
};
template <typename ...Ints> Dim(const Ints& ...) -> Dim<sizeof...(Ints)>;
template <class T, size_t D, size_t I = 0>
auto ndvec(const Dim<D> &ns, const T& value = {}) {
if constexpr (I + 1 < D) {
return std::vector(ns[I], ndvec<T, D, I + 1>(ns, value));
} else {
return std::vector<T>(ns[I], value);
}
}
}
namespace suisen {
using int128 = __int128_t;
using uint128 = __uint128_t;
template <class T> using min_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using max_priority_queue = std::priority_queue<T, std::vector<T>, std::less<T>>;
}
namespace suisen { const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; }
#ifdef LOCAL
# define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__)
template <class H, class... Ts> void debug_impl(const char* s, const H& h, const Ts&... t) {
suisen::io::cerr << "[\033[32mDEBUG\033[m] " << s << ": " << h, ((suisen::io::cerr << ", " << t), ..., (suisen::io::cerr << "\n"));
}
#else
# define debug(...) void(0)
#endif
#define FOR(e, v) for (auto &&e : v)
#define CFOR(e, v) for (const auto &e : v)
#define REP(i, ...) CFOR(i, suisen::macro::rep_impl(__VA_ARGS__))
#define RREP(i, ...) CFOR(i, suisen::macro::rrep_impl(__VA_ARGS__))
#define REPINF(i, ...) CFOR(i, suisen::macro::repinf_impl(__VA_ARGS__))
#define LOOP(n) for ([[maybe_unused]] const auto& _ : suisen::macro::rep_impl(n))
#define ALL(iterable) std::begin(iterable), std::end(iterable)
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false), std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_ {};
constexpr int iinf = std::numeric_limits<int>::max() / 2;
constexpr long long linf = std::numeric_limits<long long>::max() / 2;
#include <atcoder/modint>
using mint = atcoder::modint998244353;
namespace atcoder {
std::istream& operator>>(std::istream& in, mint &a) {
long long e; in >> e; a = e;
return in;
}
std::ostream& operator<<(std::ostream& out, const mint &a) {
out << a.val();
return out;
}
} // namespace atcoder
#include <array>
#include <cassert>
#include <optional>
namespace suisen {
namespace default_operator {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(const T &x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(const T &x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
namespace default_operator_noref {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(T x, T y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(T x, T y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(T x, T y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(T x, T y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(T x, T y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(T x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(T x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
} // namespace suisen
namespace suisen {
template <
typename T, size_t N, size_t M,
T(*_add)(T, T) = default_operator_noref::add<T>, T(*_neg)(T) = default_operator_noref::neg<T>, T(*_zero)() = default_operator_noref::zero<T>,
T(*_mul)(T, T) = default_operator_noref::mul<T>, T(*_inv)(T) = default_operator_noref::inv<T>, T(*_one)() = default_operator_noref::one<T>
>
struct ArrayMatrix : public std::array<std::array<T, M>, N> {
private:
template <typename DummyType = void>
static constexpr bool is_square_v = N == M;
template <size_t X, size_t Y>
using MatrixType = ArrayMatrix<T, X, Y, _add, _neg, _zero, _mul, _inv, _one>;
public:
using base_type = std::array<std::array<T, M>, N>;
using container_type = base_type;
using row_type = std::array<T, M>;
using base_type::base_type;
ArrayMatrix(T diag_val = _zero()) {
for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) {
(*this)[i][j] = (i == j ? diag_val : _zero());
}
}
ArrayMatrix(const container_type& c) : base_type{ c } {}
ArrayMatrix(const std::initializer_list<row_type>& c) {
assert(c.size() == N);
size_t i = 0;
for (const auto& row : c) {
for (size_t j = 0; j < M; ++j) (*this)[i][j] = row[j];
++i;
}
}
static ArrayMatrix e0() { return ArrayMatrix(_zero()); }
static MatrixType<M, M> e1() { return MatrixType<M, M>(_one()); }
int size() const {
static_assert(is_square_v<>);
return N;
}
std::pair<int, int> shape() const { return { N, M }; }
int row_size() const { return N; }
int col_size() const { return M; }
ArrayMatrix operator+() const { return *this; }
ArrayMatrix operator-() const {
ArrayMatrix A;
for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _neg((*this)[i][j]);
return A;
}
friend ArrayMatrix& operator+=(ArrayMatrix& A, const ArrayMatrix& B) {
for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _add(A[i][j], B[i][j]);
return A;
}
friend ArrayMatrix& operator-=(ArrayMatrix& A, const ArrayMatrix& B) {
for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _add(A[i][j], _neg(B[i][j]));
return A;
}
template <size_t K>
friend MatrixType<N, K>& operator*=(ArrayMatrix& A, const MatrixType<M, K>& B) { return A = A * B; }
friend ArrayMatrix& operator*=(ArrayMatrix& A, const T& val) {
for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _mul(A[i][j], val);
return A;
}
friend ArrayMatrix& operator/=(ArrayMatrix& A, const ArrayMatrix& B) { static_assert(is_square_v<>); return A *= *B.inv(); }
friend ArrayMatrix& operator/=(ArrayMatrix& A, const T& val) { return A *= _inv(val); }
friend ArrayMatrix operator+(ArrayMatrix A, const ArrayMatrix& B) { A += B; return A; }
friend ArrayMatrix operator-(ArrayMatrix A, const ArrayMatrix& B) { A -= B; return A; }
template <size_t K>
friend MatrixType<N, K> operator*(const ArrayMatrix& A, const MatrixType<M, K>& B) {
MatrixType<N, K> C;
for (size_t i = 0; i < N; ++i) {
C[i].fill(_zero());
for (size_t j = 0; j < M; ++j) for (size_t k = 0; k < K; ++k) C[i][k] = _add(C[i][k], _mul(A[i][j], B[j][k]));
}
return C;
}
friend ArrayMatrix operator*(ArrayMatrix A, const T& val) { A *= val; return A; }
friend ArrayMatrix operator*(const T& val, ArrayMatrix A) {
for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _mul(val, A[i][j]);
return A;
}
friend std::array<T, N> operator*(const ArrayMatrix& A, const std::array<T, M>& x) {
std::array<T, N> b;
b.fill(_zero());
for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) b[i] = _add(b[i], _mul(A[i][j], x[j]));
return b;
}
friend ArrayMatrix operator/(ArrayMatrix A, const ArrayMatrix& B) { static_assert(is_square_v<>); return A * B.inv(); }
friend ArrayMatrix operator/(ArrayMatrix A, const T& val) { A /= val; return A; }
friend ArrayMatrix operator/(const T& val, ArrayMatrix A) { return A.inv() *= val; }
ArrayMatrix pow(long long b) const {
static_assert(is_square_v<>);
assert(b >= 0);
ArrayMatrix res(e1()), p(*this);
for (; b; b >>= 1) {
if (b & 1) res *= p;
p *= p;
}
return res;
}
std::optional<ArrayMatrix> safe_inv() const {
static_assert(is_square_v<>);
std::array<std::array<T, 2 * N>, N> data;
for (size_t i = 0; i < N; ++i) {
for (size_t j = 0; j < N; ++j) {
data[i][j] = (*this)[i][j];
data[i][N + j] = i == j ? _one() : _zero();
}
}
for (size_t i = 0; i < N; ++i) {
for (size_t k = i; k < N; ++k) if (data[k][i] != _zero()) {
data[i].swap(data[k]);
T c = _inv(data[i][i]);
for (size_t j = i; j < 2 * N; ++j) data[i][j] = _mul(c, data[i][j]);
break;
}
if (data[i][i] == _zero()) return std::nullopt;
for (size_t k = 0; k < N; ++k) if (k != i and data[k][i] != _zero()) {
T c = data[k][i];
for (size_t j = i; j < 2 * N; ++j) data[k][j] = _add(data[k][j], _neg(_mul(c, data[i][j])));
}
}
ArrayMatrix res;
for (size_t i = 0; i < N; ++i) std::copy(data[i].begin() + N, data[i].begin() + 2 * N, res[i].begin());
return res;
}
ArrayMatrix inv() const { return *safe_inv(); }
T det() const {
static_assert(is_square_v<>);
ArrayMatrix A = *this;
bool sgn = false;
for (size_t j = 0; j < N; ++j) for (size_t i = j + 1; i < N; ++i) if (A[i][j] != _zero()) {
std::swap(A[j], A[i]);
T q = _mul(A[i][j], _inv(A[j][j]));
for (size_t k = j; k < N; ++k) A[i][k] = _add(A[i][k], _neg(_mul(A[j][k], q)));
sgn = not sgn;
}
T res = sgn ? _neg(_one()) : _one();
for (size_t i = 0; i < N; ++i) res = _mul(res, A[i][i]);
return res;
}
T det_arbitrary_mod() const {
static_assert(is_square_v<>);
ArrayMatrix A = *this;
bool sgn = false;
for (size_t j = 0; j < N; ++j) for (size_t i = j + 1; i < N; ++i) {
for (; A[i][j].val(); sgn = not sgn) {
std::swap(A[j], A[i]);
T q = A[i][j].val() / A[j][j].val();
for (size_t k = j; k < N; ++k) A[i][k] -= A[j][k] * q;
}
}
T res = sgn ? -1 : +1;
for (size_t i = 0; i < N; ++i) res *= A[i][i];
return res;
}
};
template <
typename T, size_t N,
T(*_add)(T, T) = default_operator_noref::add<T>, T(*_neg)(T) = default_operator_noref::neg<T>, T(*_zero)() = default_operator_noref::zero<T>,
T(*_mul)(T, T) = default_operator_noref::mul<T>, T(*_inv)(T) = default_operator_noref::inv<T>, T(*_one)() = default_operator_noref::one<T>
>
using SquareArrayMatrix = ArrayMatrix<T, N, N, _add, _neg, _zero, _mul, _inv, _one>;
} // namespace suisen
using matrix = ArrayMatrix<int, 2, 2>;
const matrix X[2] {
matrix{{
1, 0,
0, 1
}},
matrix{{
0, 1,
1, 0
}}
};
const matrix O[2] {
matrix{{
1, 0,
0, 1
}},
matrix{{
0, 0,
1, 1
}}
};
#include <vector>
namespace suisen {
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
struct CommutativeDualSegmentTree {
CommutativeDualSegmentTree() = default;
CommutativeDualSegmentTree(std::vector<T>&& a) : n(a.size()), m(ceil_pow2(a.size())), data(std::move(a)), lazy(m, id()) {}
CommutativeDualSegmentTree(const std::vector<T>& a) : CommutativeDualSegmentTree(std::vector<T>(a)) {}
CommutativeDualSegmentTree(int n, const T& fill_value) : CommutativeDualSegmentTree(std::vector<T>(n, fill_value)) {}
T operator[](int i) const {
assert(0 <= i and i < n);
T res = data[i];
for (i = (i + m) >> 1; i; i >>= 1) res = mapping(lazy[i], res);
return res;
}
T get(int i) const {
return (*this)[i];
}
void apply(int l, int r, const F& f) {
assert(0 <= l and r <= n);
for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
if (l & 1) apply(l++, f);
if (r & 1) apply(--r, f);
}
}
protected:
int n, m;
std::vector<T> data;
std::vector<F> lazy;
void apply(int k, const F& f) {
if (k < m) {
lazy[k] = composition(f, lazy[k]);
} else if (k - m < n) {
data[k - m] = mapping(f, data[k - m]);
}
}
private:
static int ceil_pow2(int n) {
int m = 1;
while (m < n) m <<= 1;
return m;
}
};
} // namespace suisen
namespace suisen {
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
struct DualSegmentTree : public CommutativeDualSegmentTree<T, F, mapping, composition, id> {
using base_type = CommutativeDualSegmentTree<T, F, mapping, composition, id>;
using base_type::base_type;
void apply(int l, int r, const F& f) {
push(l, r);
base_type::apply(l, r, f);
}
private:
void push(int k) {
base_type::apply(2 * k, this->lazy[k]), base_type::apply(2 * k + 1, this->lazy[k]);
this->lazy[k] = id();
}
void push(int l, int r) {
const int log = __builtin_ctz(this->m);
l += this->m, r += this->m;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
}
};
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
DualSegmentTree(int, T)->DualSegmentTree<T, F, mapping, composition, id>;
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
DualSegmentTree(std::vector<T>)->DualSegmentTree<T, F, mapping, composition, id>;
} // namespace suisen
matrix mapping(matrix f, matrix x) {
return f * x;
}
matrix composition(matrix f, matrix g) {
return f * g;
}
matrix id() {
return matrix::e1();
}
void solve() {
int n, q;
read(n, q);
vector<int> a(n);
read(a);
vector<tuple<bool, int, int, int>> qs(q);
REP(i, q) {
char c;
int l, r, x;
read(c, l, r, x);
--l;
qs[i] = { (c == 'x'), l, r, x };
}
vector<array<array<int, 2>, 30>> res(n);
REP(bit, 30) {
DualSegmentTree<matrix, matrix, mapping, composition, id> seg(vector<matrix>(n, matrix::e1()));
for (auto [is_x, l, r, x] : qs) {
int b = (x >> bit) & 1;
seg.apply(l, r, (is_x ? X : O)[b]);
}
REP(i, n) res[i][bit] = seg.get(i)[1];
}
vector<array<int, 31>> cnt(n);
REP(i, n) {
vector pd(2, array<int, 31>{});
pd[0][0] = 1;
RREP(bit, 30) {
vector dp(2, array<int, 31>{});
int mi = (a[i] >> bit) & 1;
REP(lt, 2) {
REP(ai, 2) {
if (not lt and ai > mi) continue;
int nlt = lt | (ai < mi);
int res_bit = res[i][bit][ai];
REP(num, 30 - bit) {
dp[nlt][num + res_bit] += pd[lt][num];
}
}
}
pd.swap(dp);
}
REP(num, 31) {
cnt[i][num] = pd[0][num] + pd[1][num];
if (num) cnt[i][num] += cnt[i][num - 1];
}
}
array<mint, 31> ans_leq{};
REP(num, 31) {
ans_leq[num] = 1;
REP(i, n) {
ans_leq[num] *= cnt[i][num];
}
}
mint ans = 0;
RREP(num, 1, 31) {
ans_leq[num] -= ans_leq[num - 1];
ans += num * ans_leq[num];
}
print(ans);
}
int main() {
int test_case_num = 1;
// read(test_case_num);
LOOP(test_case_num) solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0