結果

問題 No.2498 OX Operations
ユーザー fuppy_kyoprofuppy_kyopro
提出日時 2023-10-07 00:22:12
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,174 ms / 4,000 ms
コード長 22,258 bytes
コンパイル時間 4,060 ms
コンパイル使用メモリ 251,764 KB
実行使用メモリ 56,680 KB
最終ジャッジ日時 2024-07-26 17:35:27
合計ジャッジ時間 17,197 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,940 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 AC 1 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 1 ms
6,944 KB
testcase_11 AC 3 ms
6,940 KB
testcase_12 AC 8 ms
6,940 KB
testcase_13 AC 5 ms
6,944 KB
testcase_14 AC 8 ms
6,940 KB
testcase_15 AC 876 ms
46,012 KB
testcase_16 AC 1,035 ms
50,896 KB
testcase_17 AC 836 ms
44,248 KB
testcase_18 AC 1,103 ms
56,076 KB
testcase_19 AC 1,119 ms
55,612 KB
testcase_20 AC 1,121 ms
56,324 KB
testcase_21 AC 1,146 ms
56,228 KB
testcase_22 AC 425 ms
20,480 KB
testcase_23 AC 336 ms
17,152 KB
testcase_24 AC 1,152 ms
56,680 KB
testcase_25 AC 1,151 ms
56,680 KB
testcase_26 AC 1,174 ms
56,672 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//*
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
//*/

#include <bits/stdc++.h>

// #include <atcoder/all>
// #include <atcoder/lazysegtree>

using namespace std;
// using namespace atcoder;

// #define _GLIBCXX_DEBUG

#define DEBUG(x) cerr << #x << ": " << x << endl;
#define DEBUG_VEC(v)                                        \
    cerr << #v << ":";                                      \
    for (int iiiiiiii = 0; iiiiiiii < v.size(); iiiiiiii++) \
        cerr << " " << v[iiiiiiii];                         \
    cerr << endl;
#define DEBUG_MAT(v)                                \
    cerr << #v << endl;                             \
    for (int iv = 0; iv < v.size(); iv++) {         \
        for (int jv = 0; jv < v[iv].size(); jv++) { \
            cerr << v[iv][jv] << " ";               \
        }                                           \
        cerr << endl;                               \
    }
typedef long long ll;
// #define int ll

#define vi vector<int>
#define vl vector<ll>
#define vii vector<vector<int>>
#define vll vector<vector<ll>>
#define vs vector<string>
#define pii pair<int, int>
#define pis pair<int, string>
#define psi pair<string, int>
#define pll pair<ll, ll>
template <class S, class T>
pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t) {
    return pair<S, T>(s.first + t.first, s.second + t.second);
}
template <class S, class T>
pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t) { return pair<S, T>(s.first - t.first, s.second - t.second); }
template <class S, class T>
ostream &operator<<(ostream &os, pair<S, T> p) {
    os << "(" << p.first << ", " << p.second << ")";
    return os;
}
#define X first
#define Y second
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rep1(i, n) for (int i = 1; i <= (int)(n); i++)
#define rrep(i, n) for (int i = (int)(n)-1; i >= 0; i--)
#define rrep1(i, n) for (int i = (int)(n); i > 0; i--)
#define REP(i, a, b) for (int i = a; i < b; i++)
#define in(x, a, b) (a <= x && x < b)
#define all(c) c.begin(), c.end()
void YES(bool t = true) {
    cout << (t ? "YES" : "NO") << endl;
}
void Yes(bool t = true) { cout << (t ? "Yes" : "No") << endl; }
void yes(bool t = true) { cout << (t ? "yes" : "no") << endl; }
void NO(bool t = true) { cout << (t ? "NO" : "YES") << endl; }
void No(bool t = true) { cout << (t ? "No" : "Yes") << endl; }
void no(bool t = true) { cout << (t ? "no" : "yes") << endl; }
template <class T>
bool chmax(T &a, const T &b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}
#define UNIQUE(v) v.erase(std::unique(v.begin(), v.end()), v.end());
const ll inf = 1000000001;
const ll INF = (ll)1e18 + 1;
const long double pi = 3.1415926535897932384626433832795028841971L;
int popcount(ll t) { return __builtin_popcountll(t); }
// int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
// int dx2[8] = { 1,1,0,-1,-1,-1,0,1 }, dy2[8] = { 0,1,1,1,0,-1,-1,-1 };
vi dx = {0, 0, -1, 1}, dy = {-1, 1, 0, 0};
vi dx2 = {1, 1, 0, -1, -1, -1, 0, 1}, dy2 = {0, 1, 1, 1, 0, -1, -1, -1};
struct Setup_io {
    Setup_io() {
        ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
        cout << fixed << setprecision(25);
    }
} setup_io;
// const ll MOD = 1000000007;
const ll MOD = 998244353;
// #define mp make_pair
//#define endl '\n'

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0)
        d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0)
        x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

} // namespace internal

} // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T>
using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;

} // namespace internal

} // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;

} // namespace internal

template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint &operator+=(const mint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint &operator-=(const mint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint &operator*=(const mint &rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint &lhs, const mint &rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint &lhs, const mint &rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint &lhs, const mint &rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint &lhs, const mint &rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint &lhs, const mint &rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint &lhs, const mint &rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id>
struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint &operator+=(const mint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint &operator-=(const mint &rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint &operator*=(const mint &rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint &lhs, const mint &rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint &lhs, const mint &rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint &lhs, const mint &rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint &lhs, const mint &rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint &lhs, const mint &rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint &lhs, const mint &rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

} // namespace internal

} // namespace atcoder

using namespace atcoder;

using mint = modint998244353;

template <typename OperatorMonoid>
struct DuelSegmentTree {
    using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;

    int sz, height;
    vector<OperatorMonoid> lazy;
    const H h;
    const OperatorMonoid OM0;

    DuelSegmentTree(int n, const H h, const OperatorMonoid OM0)
        : h(h), OM0(OM0) {
        sz = 1;
        height = 0;
        while (sz < n)
            sz <<= 1, height++;
        lazy.assign(2 * sz, OM0);
    }

    inline void propagate(int k) {
        if (not lazy[k].defa()) {
            lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
            lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
            lazy[k] = OM0;
        }
    }

    inline void thrust(int k) {
        for (int i = height; i > 0; i--)
            propagate(k >> i);
    }

    void update(int a, int b, const OperatorMonoid &x) {
        thrust(a += sz);
        thrust(b += sz - 1);
        for (int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
            if (l & 1) lazy[l] = h(lazy[l], x), ++l;
            if (r & 1) --r, lazy[r] = h(lazy[r], x);
        }
    }

    OperatorMonoid operator[](int k) {
        thrust(k += sz);
        return lazy[k];
    }
};

int n, q;
vl ms;
constexpr int K = 35;
ll ALL = (1LL << K) - 1;

struct S {
    ll a, b;

    S(ll a = 0, ll b = ALL) : a(a), b(b){};

    bool defa() {
        return a == 0 && b == ALL;
    }
};

S f(S a, S b) {
    return S(
        (ALL ^ a.a) & b.a | a.a & b.b,
        (ALL ^ a.b) & b.a | a.b & b.b);
}

vector<mint> calc(S s, ll m) {
    vector<vector<vector<mint>>> dp(K, vector<vector<mint>>(2, vector<mint>(K)));
    dp[K - 1][1][0] = 1;
    for (int keta = K - 1; keta > 0; keta--) {
        rep(giri, 2) {
            rep(p, K) {
                mint val = dp[keta][giri][p];
                rep(x, 2) {
                    int nketa = keta - 1;
                    ll mask = 1LL << nketa;

                    int ngiri = 0;
                    if (giri == 1) {
                        ll tar = m & mask;
                        if (tar && x) {
                            ngiri = 1;
                        } else if (tar && !x) {
                            ngiri = 0;
                        } else if (!tar && x) {
                            continue;
                        } else {
                            ngiri = 1;
                        }
                    }

                    int np = p;
                    if (x == 0) {
                        if (s.a & mask) {
                            np++;
                        }
                    } else {
                        if (s.b & mask) {
                            np++;
                        }
                    }

                    dp[nketa][ngiri][np] += val;
                }
            }
        }
    }

    vector<mint> ans(K);
    rep(i, K) {
        ans[i] = dp[0][0][i] + dp[0][1][i];
    }
    return ans;
}

void solve() {
    cin >> n >> q;
    ms.resize(n);
    rep(i, n) {
        cin >> ms[i];
    }

    vector<char> c(q);
    vi l(q), r(q), x(q);
    rep(i, q) {
        cin >> c[i] >> l[i] >> r[i] >> x[i];
        l[i]--;
    }

    DuelSegmentTree<S> seg(n, f, S());
    rep(i, q) {
        if (c[i] == 'o') {
            seg.update(l[i], r[i], S(x[i], ALL));
        } else {
            seg.update(l[i], r[i], S(x[i], ALL ^ x[i]));
        }
    }

    vector<S> s(n);
    rep(i, n) {
        s[i] = seg[i];
    }

    vector<vector<mint>> num(n);
    rep(i, n) {
        num[i] = calc(s[i], ms[i]);
    }
    // rep(i, n) {
    //     rep(j, K) {
    //         cout << num[i][j].val() << " ";
    //     }
    //     cout << endl;
    // }

    // sum[i][j]: j 番目の要素の、popcount が i 以下の数
    vector<vector<mint>> sum(K, vector<mint>(n));
    rep(i, n) {
        sum[0][i] = num[i][0];
        rep1(j, K - 1) {
            sum[j][i] = sum[j - 1][i] + num[i][j];
        }
    }

    vector<vector<mint>> sum2(K, vector<mint>(n + 1));
    rep(i, K) {
        sum2[i][0] = 1;
        rep(j, n) {
            sum2[i][j + 1] = sum2[i][j] * sum[i][j];
        }
    }

    mint ans = 0;
    rep(i, n) {
        rep1(j, K - 1) {
            mint add = sum2[j - 1][i] * num[i][j];
            if (sum2[j][i + 1] != 0) {
                add *= (sum2[j][n] / sum2[j][i + 1]);
            }
            ans += add * j;
        }
    }

    cout << ans.val() << endl;
}

signed main() {
    int q = 1;
    // cin >> q;
    while (q--) {
        solve();
    }
}
0