結果

問題 No.2498 OX Operations
ユーザー tokusakuraitokusakurai
提出日時 2023-10-07 10:55:39
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 3,478 ms / 4,000 ms
コード長 9,538 bytes
コンパイル時間 2,428 ms
コンパイル使用メモリ 224,600 KB
実行使用メモリ 30,088 KB
最終ジャッジ日時 2024-07-26 17:46:36
合計ジャッジ時間 38,186 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 3 ms
6,944 KB
testcase_11 AC 5 ms
6,944 KB
testcase_12 AC 19 ms
6,948 KB
testcase_13 AC 12 ms
6,944 KB
testcase_14 AC 21 ms
6,940 KB
testcase_15 AC 2,682 ms
23,968 KB
testcase_16 AC 3,047 ms
26,644 KB
testcase_17 AC 2,517 ms
22,872 KB
testcase_18 AC 3,381 ms
29,224 KB
testcase_19 AC 3,316 ms
28,756 KB
testcase_20 AC 3,379 ms
29,396 KB
testcase_21 AC 3,321 ms
29,584 KB
testcase_22 AC 1,134 ms
12,440 KB
testcase_23 AC 894 ms
10,540 KB
testcase_24 AC 3,473 ms
30,088 KB
testcase_25 AC 3,457 ms
29,952 KB
testcase_26 AC 3,478 ms
29,828 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(15);
    }
} io_setup;

constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Mod_Int &p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;

template <typename T>
struct Binary_Indexed_Tree {
    vector<T> bit;
    const int n;

    Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) {
        bit.resize(n + 1);
        copy(begin(v), end(v), begin(bit) + 1);
        build();
    }

    Binary_Indexed_Tree(int n, T x = 0) : Binary_Indexed_Tree(vector<T>(n, x)) {}

    void set(int i, const T &x) { bit[i + 1] = x; }

    void build() {
        for (int a = 2; a <= n; a <<= 1) {
            for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
        }
    }

    void add(int i, const T &x) {
        for (i++; i <= n; i += (i & -i)) bit[i] += x;
    }

    void change(int i, const T &x) { add(i, x - query(i, i + 1)); }

    T sum(int i) const {
        i = min(i, n);
        if (i <= 0) return 0;
        T ret = 0;
        for (; i > 0; i -= (i & -i)) ret += bit[i];
        return ret;
    }

    T query(int l, int r) const {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return 0;
        return sum(r) - sum(l);
    }

    T operator[](int i) const { return query(i, i + 1); }

    // v[0]+...+v[r] >= x を満たす最小の r (なければ n)
    int lower_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }

    // v[0]+...+v[r] > x を満たす最小の r (なければ n)
    int upper_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }
};

void solve() {
    int N, Q;
    cin >> N >> Q;

    vector<int> a(N);
    rep(i, N) cin >> a[i];

    int L = 30;
    vector<vector<int>> f(N, vector<int>(L, -1));

    vector<char> c(Q);
    vector<int> l(Q), r(Q), b(Q);
    rep(i, Q) {
        cin >> c[i] >> l[i] >> r[i] >> b[i];
        l[i]--;
    }

    set<int> base;
    rep(i, N) base.emplace(i);

    rep(t, L) {
        auto s = base;
        Binary_Indexed_Tree<int> bit(N + 1, 0);
        per(i, Q) {
            if (!flg(b[i], t)) continue;
            bit.add(l[i], 1);
            bit.add(r[i], -1);
            if (c[i] == 'o') {
                for (auto it = s.lower_bound(l[i]); it != end(s) && *it < r[i]; it = s.erase(it)) {
                    int j = *it;
                    f[j][t] = 2 + bit.query(0, j + 1) % 2;
                }
            }
        }
        for (auto it = begin(s); it != end(s); it = s.erase(it)) {
            int j = *it;
            f[j][t] = bit.query(0, j + 1) % 2;
        }
    }

    // rep(i, N) print(f[i]);

    vector<mint> sum(L + 1, 1);

    rep(i, N) {
        vector<vector<mint>> dp(L + 1, vector<mint>(2, 0));
        dp[0][0] = 1;
        per(t, L) {
            vector<vector<mint>> ndp(L + 1, vector<mint>(2, 0));
            rep(j, L + 1) rep(k, 2) {
                if (dp[j][k] == 0) continue;
                rep(l, 2) {
                    if (k == 0 && l > flg(a[i], t)) continue;
                    int nj = j, nk = k;
                    if (f[i][t] == 3) nj++;
                    if (f[i][t] < 2) nj += (f[i][t] ^ l);
                    if (l < flg(a[i], t)) nk = 1;
                    ndp[nj][nk] += dp[j][k];
                }
            }
            swap(dp, ndp);
        }
        mint s = 0;
        rep(i, L + 1) {
            s += dp[i][0] + dp[i][1];
            sum[i] *= s;
        }
    }

    mint ans = 0;
    rep2(i, 1, L + 1) ans += (sum[i] - sum[i - 1]) * i;

    cout << ans << '\n';
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0