結果
問題 | No.1907 DETERMINATION |
ユーザー | ecottea |
提出日時 | 2023-10-08 02:37:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 956 ms / 4,000 ms |
コード長 | 32,230 bytes |
コンパイル時間 | 5,981 ms |
コンパイル使用メモリ | 298,704 KB |
実行使用メモリ | 8,812 KB |
最終ジャッジ日時 | 2024-07-26 18:01:58 |
合計ジャッジ時間 | 38,614 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,812 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 272 ms
6,944 KB |
testcase_08 | AC | 110 ms
6,944 KB |
testcase_09 | AC | 181 ms
6,940 KB |
testcase_10 | AC | 592 ms
8,444 KB |
testcase_11 | AC | 431 ms
7,084 KB |
testcase_12 | AC | 652 ms
8,768 KB |
testcase_13 | AC | 610 ms
8,532 KB |
testcase_14 | AC | 582 ms
8,512 KB |
testcase_15 | AC | 127 ms
6,940 KB |
testcase_16 | AC | 38 ms
6,940 KB |
testcase_17 | AC | 549 ms
8,420 KB |
testcase_18 | AC | 388 ms
7,304 KB |
testcase_19 | AC | 12 ms
6,940 KB |
testcase_20 | AC | 602 ms
8,460 KB |
testcase_21 | AC | 54 ms
6,944 KB |
testcase_22 | AC | 863 ms
7,088 KB |
testcase_23 | AC | 608 ms
8,452 KB |
testcase_24 | AC | 180 ms
6,940 KB |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | AC | 675 ms
8,680 KB |
testcase_27 | AC | 666 ms
8,684 KB |
testcase_28 | AC | 678 ms
8,596 KB |
testcase_29 | AC | 663 ms
8,544 KB |
testcase_30 | AC | 2 ms
6,944 KB |
testcase_31 | AC | 682 ms
8,720 KB |
testcase_32 | AC | 663 ms
8,680 KB |
testcase_33 | AC | 668 ms
8,680 KB |
testcase_34 | AC | 677 ms
8,556 KB |
testcase_35 | AC | 2 ms
6,940 KB |
testcase_36 | AC | 2 ms
6,944 KB |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | AC | 668 ms
8,808 KB |
testcase_39 | AC | 669 ms
8,552 KB |
testcase_40 | AC | 680 ms
8,656 KB |
testcase_41 | AC | 673 ms
8,812 KB |
testcase_42 | AC | 674 ms
8,680 KB |
testcase_43 | AC | 669 ms
8,556 KB |
testcase_44 | AC | 668 ms
8,684 KB |
testcase_45 | AC | 664 ms
8,680 KB |
testcase_46 | AC | 646 ms
8,644 KB |
testcase_47 | AC | 677 ms
8,676 KB |
testcase_48 | AC | 672 ms
8,812 KB |
testcase_49 | AC | 669 ms
8,680 KB |
testcase_50 | AC | 670 ms
8,680 KB |
testcase_51 | AC | 676 ms
8,684 KB |
testcase_52 | AC | 2 ms
6,944 KB |
testcase_53 | AC | 953 ms
7,156 KB |
testcase_54 | AC | 945 ms
7,156 KB |
testcase_55 | AC | 2 ms
6,944 KB |
testcase_56 | AC | 956 ms
7,160 KB |
testcase_57 | AC | 955 ms
7,160 KB |
testcase_58 | AC | 491 ms
8,520 KB |
testcase_59 | AC | 507 ms
8,676 KB |
testcase_60 | AC | 514 ms
8,680 KB |
testcase_61 | AC | 557 ms
8,808 KB |
testcase_62 | AC | 509 ms
8,684 KB |
testcase_63 | AC | 676 ms
8,684 KB |
testcase_64 | AC | 2 ms
6,944 KB |
testcase_65 | AC | 2 ms
6,940 KB |
testcase_66 | AC | 2 ms
6,940 KB |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620; double EPS = 1e-15; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 #define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) template <class T> inline T get(T set, int i) { return (set >> i) & T(1); } // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #ifdef _MSC_VER #include "localACL.hpp" #endif //using mint = modint1000000007; using mint = modint998244353; //using mint = modint; // mint::set_mod(m); namespace atcoder { inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>; #endif #ifdef _MSC_VER // 手元環境(Visual Studio) #include "local.hpp" #else // 提出用(gcc) inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } inline int msb(__int128 n) { return (n >> 64) != 0 ? (127 - __builtin_clzll((ll)(n >> 64))) : n != 0 ? (63 - __builtin_clzll((ll)(n))) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_mat(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif //【形式的冪級数】 /* * MFPS() : O(1) * 零多項式 f = 0 で初期化する. * * MFPS(mint c0) : O(1) * 定数多項式 f = c0 で初期化する. * * MFPS(mint c0, int n) : O(n) * n 次未満の項をもつ定数多項式 f = c0 で初期化する. * * MFPS(vm c) : O(n) * f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する. * * set_conv(vm(*CONV)(const vm&, const vm&)) : O(1) * 畳込み用の関数を CONV に設定する. * * c + f, f + c : O(1) f + g : O(n) * f - c : O(1) c - f, f - g, -f : O(n) * c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n k)(k : g の項数) * f / c : O(n) f / g : O(n log n) f / g_sp : O(n k)(k : g の項数) * 形式的冪級数としての和,差,積,商の結果を返す. * g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す. * 制約 : 商では g(0) != 0 * * MFPS f.inv(int d) : O(n log n) * 1 / f mod z^d を返す. * 制約 : f(0) != 0 * * MFPS f.quotient(MFPS g) : O(n log n) * MFPS f.reminder(MFPS g) : O(n log n) * pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n) * 多項式としての f を g で割った商,余り,商と余りの組を返す. * 制約 : g の最高次の係数は 0 でない * * int f.deg(), int f.size() : O(1) * 多項式 f の次数[項数]を返す. * * MFPS::monomial(int d, mint c = 1) : O(d) * 単項式 c z^d を返す. * * mint f.assign(mint c) : O(n) * 多項式 f の不定元 z に c を代入した値を返す. * * f.resize(int d) : O(1) * mod z^d をとる. * * f.resize() : O(n) * 不要な高次の項を削る. * * f >> d, f << d : O(n) * 係数列を d だけ右[左]シフトした多項式を返す. * (右シフトは z^d の乗算,左シフトは z^d で割った商と等価) */ struct MFPS { using SMFPS = vector<pair<int, mint>>; int n; // 係数の個数(次数 + 1) vm c; // 係数列 inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数 // コンストラクタ(0,定数,係数列で初期化) MFPS() : n(0) {} MFPS(mint c0) : n(1), c({ c0 }) {} MFPS(int c0) : n(1), c({ mint(c0) }) {} MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(const vm& c_) : n(sz(c_)), c(c_) {} MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; } // 代入 MFPS(const MFPS& f) = default; MFPS& operator=(const MFPS& f) = default; MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; } // 比較 bool operator==(const MFPS& g) const { return c == g.c; } bool operator!=(const MFPS& g) const { return c != g.c; } // アクセス inline mint const& operator[](int i) const { return c[i]; } inline mint& operator[](int i) { return c[i]; } // 次数 int deg() const { return n - 1; } int size() const { return n; } static void set_conv(vm(*CONV_)(const vm&, const vm&)) { // verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci CONV = CONV_; } // 加算 MFPS& operator+=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] += g.c[i]; else { rep(i, n) c[i] += g.c[i]; repi(i, n, g.n - 1) c.push_back(g.c[i]); n = g.n; } return *this; } MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; } // 定数加算 MFPS& operator+=(const mint& sc) { if (n == 0) { n = 1; c = { sc }; } else { c[0] += sc; } return *this; } MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; } friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; } MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; } MFPS operator+(const int& sc) const { return MFPS(*this) += sc; } friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; } // 減算 MFPS& operator-=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] -= g.c[i]; else { rep(i, n) c[i] -= g.c[i]; repi(i, n, g.n - 1) c.push_back(-g.c[i]); n = g.n; } return *this; } MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; } // 定数減算 MFPS& operator-=(const mint& sc) { *this += -sc; return *this; } MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; } friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); } MFPS& operator-=(const int& sc) { *this += -sc; return *this; } MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; } friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); } // 加法逆元 MFPS operator-() const { return MFPS(*this) *= -1; } // 定数倍 MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; } MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; } friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; } MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; } MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; } friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; } // 右からの定数除算 MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; } MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; } MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; } MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; } // 積 MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; } MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; } // 除算 MFPS inv(int d) const { // 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series //【方法】 // 1 / f mod z^d を求めることは, // f g = 1 (mod z^d) // なる g を求めることである. // この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく. // // d = 1 のときについては // g = 1 / f[0] (mod z^1) // である. // // 次に, // g = h (mod z^k) // が求まっているとして // g mod z^(2 k) // を求める.最初の式を変形していくことで // g - h = 0 (mod z^k) // ⇒ (g - h)^2 = 0 (mod z^(2 k)) // ⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k)) // ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k)) // ⇔ g - 2 h + f h^2 = 0 (mod z^(2 k)) (f g = 1 (mod z^d) より) // ⇔ g = (2 - f h) h (mod z^(2 k)) // を得る. // // この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい. Assert(!c.empty()); Assert(c[0] != 0); MFPS g(c[0].inv()); for (int k = 1; k < d; k *= 2) { int len = max(min(2 * k, d), 1); MFPS tmp(0, len); rep(i, min(len, n)) tmp[i] = -c[i]; // -f tmp *= g; // -f h tmp.resize(len); tmp[0] += 2; // 2 - f h g *= tmp; // (2 - f h) h g.resize(len); } return g; } MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); } MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; } // 余り付き除算 MFPS quotient(const MFPS& g) const { // 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/division_of_polynomials //【方法】 // f(x) = g(x) q(x) + r(x) となる q(x) を求める. // f の次数は n - 1, g の次数は m - 1 とする.(n >= m) // 従って q の次数は n - m,r の次数は m - 2 となる. // // f^R で f の係数列を逆順にした多項式を表す.すなわち // f^R(x) := f(1/x) x^(n-1) // である.他の多項式も同様とする. // // 最初の式で x → 1/x と置き換えると, // f(1/x) = g(1/x) q(1/x) + r(1/x) // ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1) // ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1) // ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1) // ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1)) // ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1)) // を得る. // // これで q を mod x^(n-m+1) で正しく求めることができることになるが, // q の次数は n - m であったから,q 自身を正しく求めることができた. if (n < g.n) return MFPS(); return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev(); } MFPS reminder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials return (*this - this->quotient(g) * g).resize(g.n - 1); } pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials pair<MFPS, MFPS> res; res.first = this->quotient(g); res.second = (*this - res.first * g).resize(g.n - 1); return res; } // スパース積 MFPS& operator*=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); mint g0 = 0; if (it0->first == 0) { g0 = it0->second; it0++; } // 後ろからインライン配る DP repir(i, n - 1, 0) { // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] += c[i] * gj; } // 定数項は最後に配るか消去しないといけない. c[i] *= g0; } return *this; } MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; } // スパース商 MFPS& operator/=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); Assert(it0->first == 0 && it0->second != 0); mint g0_inv = it0->second.inv(); it0++; // 前からインライン配る DP(後ろに累積効果あり) rep(i, n) { // 定数項は最初に配らないといけない. c[i] *= g0_inv; // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { auto [j, gj] = *it; if (i + j >= n) break; c[i + j] -= c[i] * gj; } } return *this; } MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; } // 係数反転 MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; } // 単項式 static MFPS monomial(int d, mint coef = 1) { MFPS mono(0, d + 1); mono[d] = coef; return mono; } // 不要な高次項の除去 MFPS& resize() { // 最高次の係数が非 0 になるまで削る. while (n > 0 && c[n - 1] == 0) { c.pop_back(); n--; } return *this; } // x^d 以上の項を除去する. MFPS& resize(int d) { n = d; c.resize(d); return *this; } // 不定元への代入 mint assign(const mint& x) const { mint val = 0; repir(i, n - 1, 0) val = val * x + c[i]; return val; } // 係数のシフト MFPS& operator>>=(int d) { n += d; c.insert(c.begin(), d, 0); return *this; } MFPS& operator<<=(int d) { n -= d; if (n <= 0) { c.clear(); n = 0; } else c.erase(c.begin(), c.begin() + d); return *this; } MFPS operator>>(int d) const { return MFPS(*this) >>= d; } MFPS operator<<(int d) const { return MFPS(*this) <<= d; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const MFPS& f) { if (f.n == 0) os << 0; else { rep(i, f.n) { os << f[i] << "z^" << i; if (i < f.n - 1) os << " + "; } } return os; } #endif }; //【行列】 /* * Matrix<T>(int n, int m) : O(n m) * n×m 零行列で初期化する. * * Matrix<T>(int n) : O(n^2) * n×n 単位行列で初期化する. * * Matrix<T>(vvT a) : O(n m) * 二次元配列 a[0..n)[0..m) の要素で初期化する. * * bool empty() : O(1) * 行列が空かを返す. * * A + B : O(n m) * n×m 行列 A, B の和を返す.+= も使用可. * * A - B : O(n m) * n×m 行列 A, B の差を返す.-= も使用可. * * c * A / A * c : O(n m) * n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可. * * A * x : O(n m) * n×m 行列 A と n 次元列ベクトル x の積を返す. * * x * A : O(n m) * m 次元行ベクトル x と n×m 行列 A の積を返す. * * A * B : O(n m l) * n×m 行列 A と m×l 行列 B の積を返す. * * Mat pow(ll d) : O(n^3 log d) * 自身を d 乗した行列を返す. */ template <class T> struct Matrix { int n, m; // 行列のサイズ(n 行 m 列) vector<vector<T>> v; // 行列の成分 // n×m 零行列で初期化する. Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {} // n×n 単位行列で初期化する. Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); } // 二次元配列 a[0..n)[0..m) の要素で初期化する. Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {} Matrix() : n(0), m(0) {} // 代入 Matrix(const Matrix&) = default; Matrix& operator=(const Matrix&) = default; // アクセス inline vector<T> const& operator[](int i) const { return v[i]; } inline vector<T>& operator[](int i) { // verify : https://judge.yosupo.jp/problem/matrix_product // inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった. return v[i]; } // 入力 friend istream& operator>>(istream& is, Matrix& a) { rep(i, a.n) rep(j, a.m) is >> a.v[i][j]; return is; } // 空か bool empty() const { return min(n, m) == 0; } // 比較 bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; } bool operator!=(const Matrix& b) const { return !(*this == b); } // 加算,減算,スカラー倍 Matrix& operator+=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] += b[i][j]; return *this; } Matrix& operator-=(const Matrix& b) { rep(i, n) rep(j, m) v[i][j] -= b[i][j]; return *this; } Matrix& operator*=(const T& c) { rep(i, n) rep(j, m) v[i][j] *= c; return *this; } Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; } Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; } Matrix operator*(const T& c) const { return Matrix(*this) *= c; } friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; } Matrix operator-() const { return Matrix(*this) *= T(-1); } // 行列ベクトル積 : O(m n) vector<T> operator*(const vector<T>& x) const { vector<T> y(n); rep(i, n) rep(j, m) y[i] += v[i][j] * x[j]; return y; } // ベクトル行列積 : O(m n) friend vector<T> operator*(const vector<T>& x, const Matrix& a) { vector<T> y(a.m); rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j]; return y; } // 積:O(n^3) Matrix operator*(const Matrix& b) const { // verify : https://judge.yosupo.jp/problem/matrix_product Matrix res(n, b.m); rep(i, res.n) rep(j, res.m) rep(k, m) res[i][j] += v[i][k] * b[k][j]; return res; } Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; } // 累乗:O(n^3 log d) Matrix pow(ll d) const { Matrix res(n), pow2 = *this; while (d > 0) { if (d & 1) res *= pow2; pow2 *= pow2; d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const Matrix& a) { rep(i, a.n) { os << "["; rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1]; if (i < a.n - 1) os << "\n"; } return os; } #endif }; //【逆行列】O(n^3) /* * n 次正方行列 mat の逆行列を返す(存在しなければ空) */ template <class T> Matrix<T> inverse_matrix(const Matrix<T>& mat) { // verify : https://judge.yosupo.jp/problem/inverse_matrix int n = mat.n; // 元の行列 mat と単位行列を繋げた拡大行列 v を作る. vector<vector<T>> v(n, vector<T>(2 * n)); rep(i, n) rep(j, n) { v[i][j] = mat[i][j]; if (i == j) v[i][n + j] = 1; } int m = 2 * n; // 注目位置を (i, j)(i 行目かつ j 列目)とする. int i = 0, j = 0; // 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す. while (i < n && j < m) { // 同じ列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら全て 0 の列があったので mat は非正則 if (i2 == n) return Matrix<T>(); // 見つかったら i 行目とその行を入れ替える. if (i != i2) swap(v[i], v[i2]); // v[i][j] が 1 になるよう行全体を v[i][j] で割る. T vij_inv = T(1) / v[i][j]; repi(j2, j, m - 1) v[i][j2] *= vij_inv; // v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる. rep(i2, n) { // i 行目だけは引かない. if (i2 == i) continue; T mul = v[i2][j]; repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } // 拡大行列の右半分が mat の逆行列なのでコピーする. Matrix<T> mat_inv(n, n); rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j]; return mat_inv; } //【ヘッセンベルグ縮約】O(n^3) /* * 正方行列 A = a[0..n)[0..n) を相似な上ヘッセンベルグ行列 H = P^(-1) A P に書き換える. * 上ヘッセンベルグ行列とは,対角の 2 つ下以下の成分が全て 0 であるような行列である. */ template <class T> void hessenberg_reduction(Matrix<T>& a) { // 参考 : https://hitonanode.github.io/cplib-cpp/linear_algebra_matrix/characteristic_poly.hpp // verify : https://judge.yosupo.jp/problem/characteristic_polynomial //【方法】 // 基本的にはガウスの消去法であるが,相似変換でなければならないので工夫をする. // // ガウスの消去法なら最初は 1 行目を何倍かして r(r > 1) 行目に足し込むが, // 相似変換では同時に r 列目が何倍かされて 1 列目から引かれてしまい, // せっかくの 1 列目に作った 0 が台無しになる. // // そこで,2 行目を何倍かして r(r > 2) 行目に足し込むことにすれば, // 同時に r 列目が何倍かされて 2 列目から引かれてしまっても 1 列目の 0 は無事である. // これを最後まで繰り返せば良い. //【注意】 // K が代数閉体なら T = P^(-1) A P を上三角行列にすることも可能ではあるが, // それは A の固有値を求めることと同等に難しい. const int n = a.n; repi(r, 0, n - 3) { int k = r + 1; while (k < n) { if (a[k][r] != 0) break; k++; } if (k == n) continue; if (k != r + 1) { rep(i, n) swap(a[r + 1][i], a[k][i]); rep(i, n) swap(a[i][r + 1], a[i][k]); } T r_inv = T(1) / a[r + 1][r]; repi(i, r + 2, n - 1) { T t = a[i][r] * r_inv; rep(j, n) a[i][j] -= a[r + 1][j] * t; rep(j, n) a[j][r + 1] += a[j][i] * t; } } } //【特性多項式(mod 998244353)】O(n^3) /* * 正方行列 A = a[0..n)[0..n) の特性多項式 |zI - A| を返す. * * 利用:【形式的冪級数】,【ヘッセンベルグ縮約】 */ MFPS characteristic_polynomial(Matrix<mint> a) { // verify : https://judge.yosupo.jp/problem/characteristic_polynomial //【方法】 // A を相似な上ヘッセンベルグ行列に縮約しておく(相似なので特性多項式は不変) // zI - A の首座小行列式を,最右列で余因子展開しながら再帰的に求めていく. int n = a.n; hessenberg_reduction(a); // acc[i][j] : Πk=[i..j] a[k][k-1](対角の 1 つ下の累積積) vvm acc(n, vm(n)); repi(i, 1, n - 1) { acc[i][i] = a[i][i - 1]; repi(j, i + 1, n - 1) acc[i][j] = acc[i][j - 1] * a[j][j - 1]; } // dp[j] : zI - A の j*j 首座小行列式 vector<MFPS> dp(n + 1); dp[0] = MFPS(1); repi(j, 1, n) { rep(i, j - 1) dp[j] -= dp[i] * a[i][j - 1] * acc[i + 1][j - 1]; dp[j] += dp[j - 1] * MFPS(vm{ -a[j - 1][j - 1], 1 }); } return dp[n]; } //【階乗など(法が大きな素数)】 /* * Factorial_mint(int N) : O(n) * N まで計算可能として初期化する. * * mint fact(int n) : O(1) * n! を返す. * * mint fact_inv(int n) : O(1) * 1/n! を返す(n が負なら 0 を返す) * * mint inv(int n) : O(1) * 1/n を返す. * * mint perm(int n, int r) : O(1) * 順列の数 nPr を返す. * * mint bin(int n, int r) : O(1) * 二項係数 nCr を返す. * * mint mul(vi rs) : O(|rs|) * 多項係数 nC[rs] を返す.(n = Σrs) */ class Factorial_mint { int n_max; // 階乗と階乗の逆数の値を保持するテーブル vm fac, fac_inv; public: // n! までの階乗とその逆数を前計算しておく.O(n) Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b fac[0] = 1; repi(i, 1, n) fac[i] = fac[i - 1] * i; fac_inv[n] = fac[n].inv(); repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1); } Factorial_mint() : n_max(0) {} // ダミー // n! を返す. mint fact(int n) const { // verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b Assert(0 <= n && n <= n_max); return fac[n]; } // 1/n! を返す(n が負なら 0 を返す) mint fact_inv(int n) const { // verify : https://atcoder.jp/contests/abc289/tasks/abc289_h Assert(n <= n_max); if (n < 0) return 0; return fac_inv[n]; } // 1/n を返す. mint inv(int n) const { // verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d Assert(0 < n && n <= n_max); return fac[n - 1] * fac_inv[n]; } // 順列の数 nPr を返す. mint perm(int n, int r) const { // verify : https://atcoder.jp/contests/abc172/tasks/abc172_e Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[n - r]; } // 二項係数 nCr を返す. mint bin(int n, int r) const { // verify : https://atcoder.jp/contests/abc034/tasks/abc034_c Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; return fac[n] * fac_inv[r] * fac_inv[n - r]; } // 多項係数 nC[rs] を返す. mint mul(const vi& rs) const { // verify : https://yukicoder.me/problems/no/2141 if (*min_element(all(rs)) < 0) return 0; int n = accumulate(all(rs), 0); Assert(n <= n_max); mint res = fac[n]; repe(r, rs) res *= fac_inv[r]; return res; } }; //【平行移動】O(n log n) /* * f(z + c) を返す. * * 制約 : fm は deg(f) までの階乗計算が可能であること. */ MFPS taylor_shift(const MFPS& f, mint c, const Factorial_mint& fm) { // 参考 : https://nyaannyaan.github.io/library/fps/taylor-shift.hpp.html // verify : https://judge.yosupo.jp/problem/polynomial_taylor_shift //【方法】 // f(x) = Σn=[0..N] f[n] x^n // と表されるとすると, // f(x + c) // = Σn=[0..N] f[n] (x + c)^n // = Σn=[0..N] f[n] Σr=[0..n] nCr c^(n-r) x^r (二項定理) // = Σn=[0..N] Σr=[0..n] f[n] n! / ((n-r)! r!) c^(n-r) x^r // = Σr=[0..N] Σn=[r..N] f[n] n! / ((n-r)! r!) c^(n-r) x^r (和の順序交換) // = Σr=[0..N] x^r / r! Σn=[r..N] (c^(n-r) / (n-r)!) n! f[n] // = Σr=[0..N] x^r / r! Σm=[0..N-r] (c^(N-m-r) / (N-m-r)!) (N-m)! f[N-m] (m = N - n) // = Σj=[0..N] x^(N-j) / (N-j)! Σm=[0..j] (c^(j-m) / (j-m)!) (N-m)! f[N-m] (j = N - r) // と書き直せる. // // よって // g(x) = Σn=[0..N] (c^n / n!) x^n // h(x) = Σn=[0..N] (N-n)! f[N-n] x^n // とおくと, // f(x + c) // = Σj=[0..N] x^(N-j) / (N-j)! (g*h)[j] // = Σj=[0..N] x^j / j! (g*h)[N-j] // と表される. int n = f.deg() + 1; MFPS g(1); g.resize(n); repi(i, 1, n - 1) g[i] = g[i - 1] * c * fm.inv(i); MFPS h(f); rep(i, n) h[i] *= fm.fact(i); h = h.rev(); MFPS fs = (g * h).resize(n); fs = fs.rev(); rep(i, n) fs[i] *= fm.fact_inv(i); return fs; } //【行列式】O(n^3) /* * n 次正方行列 mat の行列式を返す. */ template <class T> T determinant(const Matrix<T>& mat) { // verify : https://judge.yosupo.jp/problem/matrix_det int n = mat.n; auto v = mat.v; // 注目位置を (i, j)(i 行目かつ j 列目)とする. int i = 0, j = 0; // 行列式の値 T res(1); while (i < n && j < n) { // 同じ列の下方の行から非 0 成分を見つける. int i2 = i; while (i2 < n && v[i2][j] == T(0)) i2++; // 見つからなかったら零列ベクトルを含むので行列式は 0 である. if (i2 == n) return T(0); // 見つかったら i 行目とその行を入れ替え,行列式の値は -1 倍しておく. if (i2 != i) { swap(v[i], v[i2]); res *= T(-1); } // v[i][j] が 1 になるよう行全体を v[i][j] で割り,行列式の値は v[i][j] 倍しておく. res *= v[i][j]; T vij_inv = T(1) / v[i][j]; repi(j2, j, n - 1) v[i][j2] *= vij_inv; // v[i][j] より下方の行の成分が全て 0 になるよう i 行目を定数倍して減じる(行列式の値は変化しない) repi(i2, i + 1, n - 1) { T mul = v[i2][j]; repi(j2, j, n - 1) v[i2][j2] -= v[i][j2] * mul; } // 注目位置を右下に移す. i++; j++; } return res; } //【行列式(1 次多項式)】O(n^3) /* * 与えられた n 次正方行列 A, B に対し n 次多項式 det(z A + B) を返す. * * 制約:fm は n! まで計算可能 * * 利用:【逆行列】,【行列式】,【特性多項式(mod 998244353)】 */ MFPS determinant_FPS_1deg(const Matrix<mint>& A, const Matrix<mint>& B, const Factorial_mint& fm) { //【方法】 // もし A が正則行列だったら, // |z A + B| // = |A A^(-1) (z A + B)| // = |A| |z I + A^(-1) B| // となるので,-A^(-1) B の固有多項式を求めて |A| 倍すれば良い. // 一般には A が正則とは限らないのでこれは実際には使えない. // // もし B が正則行列だったら,先と同様に考えて, // |z A + B| // = |(z A + B) B^(-1) B| // = |z A B^(-1) + I| |B| // = |A B^(-1) + z^(-1) I| |B| z^n // となるので,-A B^(-1) の固有多項式を求めて係数を反転し,|B| 倍すれば良い. // 一般には B も正則とは限らないが,次の工夫により B が正則の場合に帰着できる. // // taylor_shift() を使えば |z A + B| を c だけ平行移動した // |(z - c) A + B| = |z A + (B - c A)| // さえ求まれば高速に |z A + B| を復元できる. // そこで,c をランダムに選んで B - c A が正則になるようにする. // もしそのような c が見つからなければ多項式として |z A + B| = 0 である. int n = A.n; mt19937 mt; mt.seed((int)time(NULL)); uniform_int_distribution<> rnd(0, 998244352); mint c; Matrix<mint> B2, B2_inv; int i = 5; while (i > 0) { c = rnd(mt); B2 = B - c * A; B2_inv = inverse_matrix(B2); if (!B2_inv.empty()) break; i--; } // 5 回やってだめなら非正則と判断する. if (i == 0) return MFPS(0, n + 1); MFPS f = characteristic_polynomial(-A * B2_inv); f = f.rev(); f = taylor_shift(f, c, fm); f *= determinant(B2); return f; } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; Matrix<mint> A(n, n), B(n, n); cin >> B >> A; Factorial_mint fm(n); auto f = determinant_FPS_1deg(A, B, fm); repi(i, 0, n) cout << f[i] << endl; }