結果

問題 No.1907 DETERMINATION
ユーザー ecotteaecottea
提出日時 2023-10-08 02:37:40
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,057 ms / 4,000 ms
コード長 32,230 bytes
コンパイル時間 7,027 ms
コンパイル使用メモリ 296,652 KB
実行使用メモリ 8,668 KB
最終ジャッジ日時 2023-10-08 02:38:25
合計ジャッジ時間 41,385 ms
ジャッジサーバーID
(参考情報)
judge12 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,352 KB
testcase_01 AC 1 ms
4,352 KB
testcase_02 AC 2 ms
4,356 KB
testcase_03 AC 1 ms
4,356 KB
testcase_04 AC 2 ms
4,356 KB
testcase_05 AC 2 ms
4,352 KB
testcase_06 AC 1 ms
4,356 KB
testcase_07 AC 295 ms
6,296 KB
testcase_08 AC 117 ms
5,184 KB
testcase_09 AC 199 ms
5,664 KB
testcase_10 AC 637 ms
8,188 KB
testcase_11 AC 496 ms
6,888 KB
testcase_12 AC 706 ms
8,408 KB
testcase_13 AC 688 ms
8,156 KB
testcase_14 AC 633 ms
8,404 KB
testcase_15 AC 140 ms
5,392 KB
testcase_16 AC 40 ms
4,384 KB
testcase_17 AC 596 ms
8,116 KB
testcase_18 AC 425 ms
7,364 KB
testcase_19 AC 12 ms
4,356 KB
testcase_20 AC 659 ms
8,180 KB
testcase_21 AC 58 ms
4,496 KB
testcase_22 AC 977 ms
6,992 KB
testcase_23 AC 674 ms
8,292 KB
testcase_24 AC 201 ms
5,892 KB
testcase_25 AC 2 ms
4,352 KB
testcase_26 AC 735 ms
8,540 KB
testcase_27 AC 756 ms
8,424 KB
testcase_28 AC 732 ms
8,372 KB
testcase_29 AC 735 ms
8,544 KB
testcase_30 AC 2 ms
4,356 KB
testcase_31 AC 760 ms
8,364 KB
testcase_32 AC 731 ms
8,424 KB
testcase_33 AC 739 ms
8,436 KB
testcase_34 AC 760 ms
8,392 KB
testcase_35 AC 1 ms
4,356 KB
testcase_36 AC 1 ms
4,352 KB
testcase_37 AC 1 ms
4,356 KB
testcase_38 AC 739 ms
8,372 KB
testcase_39 AC 761 ms
8,484 KB
testcase_40 AC 736 ms
8,668 KB
testcase_41 AC 739 ms
8,400 KB
testcase_42 AC 760 ms
8,420 KB
testcase_43 AC 750 ms
8,420 KB
testcase_44 AC 741 ms
8,352 KB
testcase_45 AC 762 ms
8,668 KB
testcase_46 AC 724 ms
8,364 KB
testcase_47 AC 756 ms
8,456 KB
testcase_48 AC 740 ms
8,616 KB
testcase_49 AC 746 ms
8,348 KB
testcase_50 AC 765 ms
8,380 KB
testcase_51 AC 734 ms
8,344 KB
testcase_52 AC 1 ms
4,356 KB
testcase_53 AC 1,040 ms
6,956 KB
testcase_54 AC 1,056 ms
6,848 KB
testcase_55 AC 1 ms
4,356 KB
testcase_56 AC 1,057 ms
6,948 KB
testcase_57 AC 1,056 ms
6,820 KB
testcase_58 AC 540 ms
8,416 KB
testcase_59 AC 559 ms
8,456 KB
testcase_60 AC 563 ms
8,364 KB
testcase_61 AC 615 ms
8,404 KB
testcase_62 AC 576 ms
8,344 KB
testcase_63 AC 736 ms
8,368 KB
testcase_64 AC 2 ms
4,356 KB
testcase_65 AC 2 ms
4,356 KB
testcase_66 AC 1 ms
4,356 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
inline int msb(__int128 n) { return (n >> 64) != 0 ? (127 - __builtin_clzll((ll)(n >> 64))) : n != 0 ? (63 - __builtin_clzll((ll)(n))) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【形式的冪級数】
/*
* MFPS() : O(1)
*	零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
*	定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
*	n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
*	f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
*	畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1)	f + g : O(n)
* f - c : O(1)			c - f, f - g, -f : O(n)
* c * f, f * c : O(n)	f * g : O(n log n)		f * g_sp : O(n k)(k : g の項数)
* f / c : O(n)			f / g : O(n log n)		f / g_sp : O(n k)(k : g の項数)
*	形式的冪級数としての和,差,積,商の結果を返す.
*	g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
*	制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
*	1 / f mod z^d を返す.
*	制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
*	多項式としての f を g で割った商,余り,商と余りの組を返す.
*	制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
*	多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d, mint c = 1) : O(d)
*	単項式 c z^d を返す.
*
* mint f.assign(mint c) : O(n)
*	多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
*	mod z^d をとる.
*
* f.resize() : O(n)
*	不要な高次の項を削る.
*
* f >> d, f << d : O(n)
*	係数列を d だけ右[左]シフトした多項式を返す.
*  (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*/
struct MFPS {
	using SMFPS = vector<pair<int, mint>>;

	int n; // 係数の個数(次数 + 1)
	vm c; // 係数列
	inline static vm(*CONV)(const vm&, const vm&) = convolution; // 畳込み用の関数

	// コンストラクタ(0,定数,係数列で初期化)
	MFPS() : n(0) {}
	MFPS(mint c0) : n(1), c({ c0 }) {}
	MFPS(int c0) : n(1), c({ mint(c0) }) {}
	MFPS(mint c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(int c0, int d) : n(d), c(n) { c[0] = c0; }
	MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
	MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }

	// 代入
	MFPS(const MFPS& f) = default;
	MFPS& operator=(const MFPS& f) = default;
	MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }

	// 比較
	bool operator==(const MFPS& g) const { return c == g.c; }
	bool operator!=(const MFPS& g) const { return c != g.c; }

	// アクセス
	inline mint const& operator[](int i) const { return c[i]; }
	inline mint& operator[](int i) { return c[i]; }

	// 次数
	int deg() const { return n - 1; }
	int size() const { return n; }

	static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
		// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci

		CONV = CONV_;
	}

	// 加算
	MFPS& operator+=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
		else {
			rep(i, n) c[i] += g.c[i];
			repi(i, n, g.n - 1)	c.push_back(g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }

	// 定数加算
	MFPS& operator+=(const mint& sc) {
		if (n == 0) { n = 1; c = { sc }; }
		else { c[0] += sc; }
		return *this;
	}
	MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
	MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
	MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
	friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }

	// 減算
	MFPS& operator-=(const MFPS& g) {
		if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
		else {
			rep(i, n) c[i] -= g.c[i];
			repi(i, n, g.n - 1) c.push_back(-g.c[i]);
			n = g.n;
		}
		return *this;
	}
	MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }

	// 定数減算
	MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
	MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
	MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
	MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
	friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }

	// 加法逆元
	MFPS operator-() const { return MFPS(*this) *= -1; }

	// 定数倍
	MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
	MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
	MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
	MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
	friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }

	// 右からの定数除算
	MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
	MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
	MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
	MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }

	// 積
	MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
	MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }

	// 除算
	MFPS inv(int d) const {
		// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series

		//【方法】
		// 1 / f mod z^d を求めることは,
		//		f g = 1 (mod z^d)
		// なる g を求めることである.
		// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
		//
		// d = 1 のときについては
		//		g = 1 / f[0] (mod z^1)
		// である.
		//
		// 次に,
		//		g = h (mod z^k)
		// が求まっているとして
		//		g mod z^(2 k)
		// を求める.最初の式を変形していくことで
		//		g - h = 0 (mod z^k)
		//		⇒ (g - h)^2 = 0 (mod z^(2 k))
		//		⇔ g^2 - 2 g h + h^2 = 0 (mod z^(2 k))
		//		⇒ f g^2 - 2 f g h + f h^2 = 0 (mod z^(2 k))
		//		⇔ g - 2 h + f h^2 = 0 (mod z^(2 k))  (f g = 1 (mod z^d) より)
		//		⇔ g = (2 - f h) h (mod z^(2 k))
		// を得る.
		//
		// この手順を d ≦ 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.

		Assert(!c.empty());
		Assert(c[0] != 0);

		MFPS g(c[0].inv());
		for (int k = 1; k < d; k *= 2) {
			int len = max(min(2 * k, d), 1);
			MFPS tmp(0, len);
			rep(i, min(len, n)) tmp[i] = -c[i];	// -f
			tmp *= g;							// -f h
			tmp.resize(len);
			tmp[0] += 2;						// 2 - f h
			g *= tmp;							// (2 - f h) h
			g.resize(len);
		}

		return g;
	}
	MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
	MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }

	// 余り付き除算
	MFPS quotient(const MFPS& g) const {
		// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		//【方法】
		// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
		// f の次数は n - 1, g の次数は m - 1 とする.(n >= m)
		// 従って q の次数は n - m,r の次数は m - 2 となる.
		// 
		// f^R で f の係数列を逆順にした多項式を表す.すなわち
		//		f^R(x) := f(1/x) x^(n-1)
		// である.他の多項式も同様とする.
		//
		// 最初の式で x → 1/x と置き換えると,
		//		f(1/x) = g(1/x) q(1/x) + r(1/x)
		//		⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
		//		⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
		//		⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
		//		⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
		// 	    ⇒ q^R(x) = f^R(x) / g^R(x)  (mod x^(n-m+1))
		// を得る.
		// 	   
		// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
		// q の次数は n - m であったから,q 自身を正しく求めることができた.

		if (n < g.n) return MFPS();
		return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
	}
	MFPS reminder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		return (*this - this->quotient(g) * g).resize(g.n - 1);
	}
	pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
		// verify : https://judge.yosupo.jp/problem/division_of_polynomials

		pair<MFPS, MFPS> res;
		res.first = this->quotient(g);
		res.second = (*this - res.first * g).resize(g.n - 1);
		return res;
	}

	// スパース積
	MFPS& operator*=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		mint g0 = 0;
		if (it0->first == 0) {
			g0 = it0->second;
			it0++;
		}

		// 後ろからインライン配る DP
		repir(i, n - 1, 0) {
			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] += c[i] * gj;
			}

			// 定数項は最後に配るか消去しないといけない.
			c[i] *= g0;
		}

		return *this;
	}
	MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }

	// スパース商
	MFPS& operator/=(const SMFPS& g) {
		// g の定数項だけ例外処理
		auto it0 = g.begin();
		Assert(it0->first == 0 && it0->second != 0);
		mint g0_inv = it0->second.inv();
		it0++;

		// 前からインライン配る DP(後ろに累積効果あり)
		rep(i, n) {

			// 定数項は最初に配らないといけない.
			c[i] *= g0_inv;

			// 上位項に係数倍して配っていく.
			for (auto it = it0; it != g.end(); it++) {
				auto [j, gj] = *it;

				if (i + j >= n) break;

				c[i + j] -= c[i] * gj;
			}
		}

		return *this;
	}
	MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }

	// 係数反転
	MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }

	// 単項式
	static MFPS monomial(int d, mint coef = 1) {
		MFPS mono(0, d + 1);
		mono[d] = coef;
		return mono;
	}

	// 不要な高次項の除去
	MFPS& resize() {
		// 最高次の係数が非 0 になるまで削る.
		while (n > 0 && c[n - 1] == 0) {
			c.pop_back();
			n--;
		}
		return *this;
	}

	// x^d 以上の項を除去する.
	MFPS& resize(int d) {
		n = d;
		c.resize(d);
		return *this;
	}

	// 不定元への代入
	mint assign(const mint& x) const {
		mint val = 0;
		repir(i, n - 1, 0) val = val * x + c[i];
		return val;
	}

	// 係数のシフト
	MFPS& operator>>=(int d) {
		n += d;
		c.insert(c.begin(), d, 0);
		return *this;
	}
	MFPS& operator<<=(int d) {
		n -= d;
		if (n <= 0) { c.clear(); n = 0; }
		else c.erase(c.begin(), c.begin() + d);
		return *this;
	}
	MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
	MFPS operator<<(int d) const { return MFPS(*this) <<= d; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const MFPS& f) {
		if (f.n == 0) os << 0;
		else {
			rep(i, f.n) {
				os << f[i] << "z^" << i;
				if (i < f.n - 1) os << " + ";
			}
		}
		return os;
	}
#endif
};


//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
*	n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
*	n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
*	二次元配列 a[0..n)[0..m) の要素で初期化する.
*
* bool empty() : O(1)
*	行列が空かを返す.
*
* A + B : O(n m)
*	n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
*	n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
*	n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
*	n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)
*	m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
*	n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
*	自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
	int n, m; // 行列のサイズ(n 行 m 列)
	vector<vector<T>> v; // 行列の成分

	// n×m 零行列で初期化する.
	Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}

	// n×n 単位行列で初期化する.
	Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }

	// 二次元配列 a[0..n)[0..m) の要素で初期化する.
	Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
	Matrix() : n(0), m(0) {}

	// 代入
	Matrix(const Matrix&) = default;
	Matrix& operator=(const Matrix&) = default;

	// アクセス
	inline vector<T> const& operator[](int i) const { return v[i]; }
	inline vector<T>& operator[](int i) {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
		return v[i];
	}

	// 入力
	friend istream& operator>>(istream& is, Matrix& a) {
		rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
		return is;
	}

	// 空か
	bool empty() const { return min(n, m) == 0; }

	// 比較
	bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
	bool operator!=(const Matrix& b) const { return !(*this == b); }

	// 加算,減算,スカラー倍
	Matrix& operator+=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] += b[i][j];
		return *this;
	}
	Matrix& operator-=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] -= b[i][j];
		return *this;
	}
	Matrix& operator*=(const T& c) {
		rep(i, n) rep(j, m) v[i][j] *= c;
		return *this;
	}
	Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
	Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
	Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
	friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
	Matrix operator-() const { return Matrix(*this) *= T(-1); }

	// 行列ベクトル積 : O(m n)
	vector<T> operator*(const vector<T>& x) const {
		vector<T> y(n);
		rep(i, n) rep(j, m)	y[i] += v[i][j] * x[j];
		return y;
	}

	// ベクトル行列積 : O(m n)
	friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
		vector<T> y(a.m);
		rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
		return y;
	}

	// 積:O(n^3)
	Matrix operator*(const Matrix& b) const {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		Matrix res(n, b.m);
		rep(i, res.n) rep(j, res.m) rep(k, m) res[i][j] += v[i][k] * b[k][j];
		return res;
	}
	Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }

	// 累乗:O(n^3 log d)
	Matrix pow(ll d) const {
		Matrix res(n), pow2 = *this;
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d /= 2;
		}
		return res;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Matrix& a) {
		rep(i, a.n) {
			os << "[";
			rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
			if (i < a.n - 1) os << "\n";
		}
		return os;
	}
#endif
};


//【逆行列】O(n^3)
/*
* n 次正方行列 mat の逆行列を返す(存在しなければ空)
*/
template <class T>
Matrix<T> inverse_matrix(const Matrix<T>& mat) {
	// verify : https://judge.yosupo.jp/problem/inverse_matrix

	int n = mat.n;

	// 元の行列 mat と単位行列を繋げた拡大行列 v を作る.
	vector<vector<T>> v(n, vector<T>(2 * n));
	rep(i, n) rep(j, n) {
		v[i][j] = mat[i][j];
		if (i == j) v[i][n + j] = 1;
	}
	int m = 2 * n;

	// 注目位置を (i, j)(i 行目かつ j 列目)とする.
	int i = 0, j = 0;

	// 拡大行列に対して行基本変形を行い,左側を単位行列にすることを目指す.
	while (i < n && j < m) {
		// 同じ列の下方の行から非 0 成分を見つける.
		int i2 = i;
		while (i2 < n && v[i2][j] == T(0)) i2++;

		// 見つからなかったら全て 0 の列があったので mat は非正則
		if (i2 == n) return Matrix<T>();

		// 見つかったら i 行目とその行を入れ替える.
		if (i != i2) swap(v[i], v[i2]);

		// v[i][j] が 1 になるよう行全体を v[i][j] で割る.
		T vij_inv = T(1) / v[i][j];
		repi(j2, j, m - 1) v[i][j2] *= vij_inv;

		// v[i][j] と同じ列の成分が全て 0 になるよう i 行目を定数倍して減じる.
		rep(i2, n) {
			// i 行目だけは引かない.
			if (i2 == i) continue;

			T mul = v[i2][j];
			repi(j2, j, m - 1) v[i2][j2] -= v[i][j2] * mul;
		}

		// 注目位置を右下に移す.
		i++; j++;
	}

	// 拡大行列の右半分が mat の逆行列なのでコピーする.
	Matrix<T> mat_inv(n, n);
	rep(i, n) rep(j, n) mat_inv[i][j] = v[i][n + j];

	return mat_inv;
}


//【ヘッセンベルグ縮約】O(n^3)
/*
* 正方行列 A = a[0..n)[0..n) を相似な上ヘッセンベルグ行列 H = P^(-1) A P に書き換える.
* 上ヘッセンベルグ行列とは,対角の 2 つ下以下の成分が全て 0 であるような行列である.
*/
template <class T>
void hessenberg_reduction(Matrix<T>& a) {
	// 参考 : https://hitonanode.github.io/cplib-cpp/linear_algebra_matrix/characteristic_poly.hpp
	// verify : https://judge.yosupo.jp/problem/characteristic_polynomial

	//【方法】
	// 基本的にはガウスの消去法であるが,相似変換でなければならないので工夫をする.
	// 
	// ガウスの消去法なら最初は 1 行目を何倍かして r(r > 1) 行目に足し込むが,
	// 相似変換では同時に r 列目が何倍かされて 1 列目から引かれてしまい,
	// せっかくの 1 列目に作った 0 が台無しになる.
	//
	// そこで,2 行目を何倍かして r(r > 2) 行目に足し込むことにすれば,
	// 同時に r 列目が何倍かされて 2 列目から引かれてしまっても 1 列目の 0 は無事である.
	// これを最後まで繰り返せば良い.

	//【注意】
	// K が代数閉体なら T = P^(-1) A P を上三角行列にすることも可能ではあるが,
	// それは A の固有値を求めることと同等に難しい.

	const int n = a.n;

	repi(r, 0, n - 3) {
		int k = r + 1;
		while (k < n) {
			if (a[k][r] != 0) break;
			k++;
		}
		if (k == n) continue;

		if (k != r + 1) {
			rep(i, n) swap(a[r + 1][i], a[k][i]);
			rep(i, n) swap(a[i][r + 1], a[i][k]);
		}

		T r_inv = T(1) / a[r + 1][r];
		repi(i, r + 2, n - 1) {
			T t = a[i][r] * r_inv;
			rep(j, n) a[i][j] -= a[r + 1][j] * t;
			rep(j, n) a[j][r + 1] += a[j][i] * t;
		}
	}
}


//【特性多項式(mod 998244353)】O(n^3)
/*
* 正方行列 A = a[0..n)[0..n) の特性多項式 |zI - A| を返す.
*
* 利用:【形式的冪級数】,【ヘッセンベルグ縮約】
*/
MFPS characteristic_polynomial(Matrix<mint> a) {
	// verify : https://judge.yosupo.jp/problem/characteristic_polynomial

	//【方法】
	// A を相似な上ヘッセンベルグ行列に縮約しておく(相似なので特性多項式は不変)
	// zI - A の首座小行列式を,最右列で余因子展開しながら再帰的に求めていく.

	int n = a.n;
	hessenberg_reduction(a);

	// acc[i][j] : Πk=[i..j] a[k][k-1](対角の 1 つ下の累積積)
	vvm acc(n, vm(n));
	repi(i, 1, n - 1) {
		acc[i][i] = a[i][i - 1];
		repi(j, i + 1, n - 1) acc[i][j] = acc[i][j - 1] * a[j][j - 1];
	}

	// dp[j] : zI - A の j*j 首座小行列式
	vector<MFPS> dp(n + 1);
	dp[0] = MFPS(1);

	repi(j, 1, n) {
		rep(i, j - 1) dp[j] -= dp[i] * a[i][j - 1] * acc[i + 1][j - 1];
		dp[j] += dp[j - 1] * MFPS(vm{ -a[j - 1][j - 1], 1 });
	}

	return dp[n];
}


//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int N) : O(n)
*	N まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
*	n! を返す.
*
* mint fact_inv(int n) : O(1)
*	1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
*	1/n を返す.
*
* mint perm(int n, int r) : O(1)
*	順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
*	二項係数 nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] を返す.(n = Σrs)
*/
class Factorial_mint {
	int n_max;

	// 階乗と階乗の逆数の値を保持するテーブル
	vm fac, fac_inv;

public:
	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		fac[0] = 1;
		repi(i, 1, n) fac[i] = fac[i - 1] * i;

		fac_inv[n] = fac[n].inv();
		repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
	}
	Factorial_mint() : n_max(0) {} // ダミー

	// n! を返す.
	mint fact(int n) const {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		Assert(0 <= n && n <= n_max);
		return fac[n];
	}

	// 1/n! を返す(n が負なら 0 を返す)
	mint fact_inv(int n) const {
		// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h

		Assert(n <= n_max);
		if (n < 0) return 0;
		return fac_inv[n];
	}

	// 1/n を返す.
	mint inv(int n) const {
		// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d

		Assert(0 < n && n <= n_max);
		return fac[n - 1] * fac_inv[n];
	}

	// 順列の数 nPr を返す.
	mint perm(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e

		Assert(n <= n_max);

		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[n - r];
	}

	// 二項係数 nCr を返す.
	mint bin(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc034/tasks/abc034_c

		Assert(n <= n_max);
		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[r] * fac_inv[n - r];
	}

	// 多項係数 nC[rs] を返す.
	mint mul(const vi& rs) const {
		// verify : https://yukicoder.me/problems/no/2141

		if (*min_element(all(rs)) < 0) return 0;
		int n = accumulate(all(rs), 0);
		Assert(n <= n_max);

		mint res = fac[n];
		repe(r, rs) res *= fac_inv[r];

		return res;
	}
};


//【平行移動】O(n log n)
/*
* f(z + c) を返す.
*
* 制約 : fm は deg(f) までの階乗計算が可能であること.
*/
MFPS taylor_shift(const MFPS& f, mint c, const Factorial_mint& fm) {
	// 参考 : https://nyaannyaan.github.io/library/fps/taylor-shift.hpp.html
	// verify : https://judge.yosupo.jp/problem/polynomial_taylor_shift

	//【方法】
	//	f(x) = Σn=[0..N] f[n] x^n
	// と表されるとすると,
	//	f(x + c)
	//	= Σn=[0..N] f[n] (x + c)^n
	//	= Σn=[0..N] f[n] Σr=[0..n] nCr c^(n-r) x^r (二項定理)
	//	= Σn=[0..N] Σr=[0..n] f[n] n! / ((n-r)! r!) c^(n-r) x^r
	//	= Σr=[0..N] Σn=[r..N] f[n] n! / ((n-r)! r!) c^(n-r) x^r (和の順序交換)
	//	= Σr=[0..N] x^r / r! Σn=[r..N] (c^(n-r) / (n-r)!) n! f[n]
	//	= Σr=[0..N] x^r / r! Σm=[0..N-r] (c^(N-m-r) / (N-m-r)!) (N-m)! f[N-m] (m = N - n)
	//	= Σj=[0..N] x^(N-j) / (N-j)! Σm=[0..j] (c^(j-m) / (j-m)!) (N-m)! f[N-m] (j = N - r)
	// と書き直せる.
	//
	// よって
	//	g(x) = Σn=[0..N] (c^n / n!) x^n
	//	h(x) = Σn=[0..N] (N-n)! f[N-n] x^n
	// とおくと,
	//	f(x + c)
	//  = Σj=[0..N] x^(N-j) / (N-j)! (g*h)[j]
	//	= Σj=[0..N] x^j / j! (g*h)[N-j]
	// と表される.

	int n = f.deg() + 1;

	MFPS g(1);
	g.resize(n);
	repi(i, 1, n - 1) g[i] = g[i - 1] * c * fm.inv(i);

	MFPS h(f);
	rep(i, n) h[i] *= fm.fact(i);
	h = h.rev();

	MFPS fs = (g * h).resize(n);
	fs = fs.rev();
	rep(i, n) fs[i] *= fm.fact_inv(i);

	return fs;
}


//【行列式】O(n^3)
/*
* n 次正方行列 mat の行列式を返す.
*/
template <class T>
T determinant(const Matrix<T>& mat) {
	// verify : https://judge.yosupo.jp/problem/matrix_det

	int n = mat.n; auto v = mat.v;

	// 注目位置を (i, j)(i 行目かつ j 列目)とする.
	int i = 0, j = 0;

	// 行列式の値
	T res(1);

	while (i < n && j < n) {
		// 同じ列の下方の行から非 0 成分を見つける.
		int i2 = i;
		while (i2 < n && v[i2][j] == T(0)) i2++;

		// 見つからなかったら零列ベクトルを含むので行列式は 0 である.
		if (i2 == n) return T(0);

		// 見つかったら i 行目とその行を入れ替え,行列式の値は -1 倍しておく.
		if (i2 != i) {
			swap(v[i], v[i2]);
			res *= T(-1);
		}

		// v[i][j] が 1 になるよう行全体を v[i][j] で割り,行列式の値は v[i][j] 倍しておく.
		res *= v[i][j];
		T vij_inv = T(1) / v[i][j];
		repi(j2, j, n - 1) v[i][j2] *= vij_inv;

		// v[i][j] より下方の行の成分が全て 0 になるよう i 行目を定数倍して減じる(行列式の値は変化しない)
		repi(i2, i + 1, n - 1) {
			T mul = v[i2][j];
			repi(j2, j, n - 1) v[i2][j2] -= v[i][j2] * mul;
		}

		// 注目位置を右下に移す.
		i++; j++;
	}

	return res;
}


//【行列式(1 次多項式)】O(n^3)
/*
* 与えられた n 次正方行列 A, B に対し n 次多項式 det(z A + B) を返す.
* 
* 制約:fm は n! まで計算可能
* 
* 利用:【逆行列】,【行列式】,【特性多項式(mod 998244353)】
*/
MFPS determinant_FPS_1deg(const Matrix<mint>& A, const Matrix<mint>& B, const Factorial_mint& fm) {
	//【方法】
	// もし A が正則行列だったら,
	//		|z A + B|
	//		= |A A^(-1) (z A + B)|
	//		= |A| |z I + A^(-1) B|
	// となるので,-A^(-1) B の固有多項式を求めて |A| 倍すれば良い.
	// 一般には A が正則とは限らないのでこれは実際には使えない.
	// 
	// もし B が正則行列だったら,先と同様に考えて,
	//		|z A + B|
	//		= |(z A + B) B^(-1) B|
	// 		= |z A B^(-1) + I| |B|
	// 		= |A B^(-1) + z^(-1) I| |B| z^n
	// となるので,-A B^(-1) の固有多項式を求めて係数を反転し,|B| 倍すれば良い.
	// 一般には B も正則とは限らないが,次の工夫により B が正則の場合に帰着できる.
	// 
	// taylor_shift() を使えば |z A + B| を c だけ平行移動した
	//		|(z - c) A + B| = |z A + (B - c A)|
	// さえ求まれば高速に |z A + B| を復元できる.
	// そこで,c をランダムに選んで B - c A が正則になるようにする.
	// もしそのような c が見つからなければ多項式として |z A + B| = 0 である.

	int n = A.n;

	mt19937 mt;
	mt.seed((int)time(NULL));
	uniform_int_distribution<> rnd(0, 998244352);

	mint c; Matrix<mint> B2, B2_inv;
	int i = 5;
	while (i > 0) {
		c = rnd(mt);
		B2 = B - c * A;
		B2_inv = inverse_matrix(B2);
		if (!B2_inv.empty()) break;
		i--;
	}

	// 5 回やってだめなら非正則と判断する.
	if (i == 0) return MFPS(0, n + 1);

	MFPS f = characteristic_polynomial(-A * B2_inv);
	f = f.rev();
	f = taylor_shift(f, c, fm);
	f *= determinant(B2);

	return f;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n;
	cin >> n;

	Matrix<mint> A(n, n), B(n, n);
	cin >> B >> A;

	Factorial_mint fm(n);
	auto f = determinant_FPS_1deg(A, B, fm);

	repi(i, 0, n) cout << f[i] << endl;
}
0