結果
| 問題 |
No.1907 DETERMINATION
|
| コンテスト | |
| ユーザー |
tko919
|
| 提出日時 | 2023-10-08 03:28:27 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 22,190 bytes |
| コンパイル時間 | 2,591 ms |
| コンパイル使用メモリ | 220,960 KB |
| 最終ジャッジ日時 | 2025-02-17 06:15:51 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 61 WA * 2 |
ソースコード
#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(v) (v).begin(),(v).end()
#define UNIQUE(v) sort(ALL(v)),(v).erase(unique(ALL(v)),(v).end())
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(v,x) lower_bound(ALL(v),(x))-(v).begin()
#define UB(v,x) upper_bound(ALL(v),(x))-(v).begin()
using ll=long long int;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;
template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}
template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}
template<typename T,typename U>T ceil(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?(x+y-1)/y:x/y);}
template<typename T,typename U>T floor(T x,U y){assert(y!=0); if(y<0)x=-x,y=-y; return (x>0?x/y:(x-y+1)/y);}
template<typename T>int popcnt(T x){return __builtin_popcountll(x);}
template<typename T>int topbit(T x){return (x==0?-1:63-__builtin_clzll(x));}
template<typename T>int lowbit(T x){return (x==0?-1:__builtin_ctzll(x));}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>
class FastIO{
static constexpr int L=1<<16;
char rdbuf[L];
int rdLeft=0,rdRight=0;
inline void reload(){
int len=rdRight-rdLeft;
memmove(rdbuf,rdbuf+rdLeft,len);
rdLeft=0,rdRight=len;
rdRight+=fread(rdbuf+len,1,L-len,stdin);
}
inline bool skip(){
for(;;){
while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++;
if(rdLeft==rdRight){
reload();
if(rdLeft==rdRight)return false;
}
else break;
}
return true;
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));
}
return true;
}
inline bool _read(__int128_t& x){
if(!skip())return false;
if(rdLeft+40>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));
}
return true;
}
inline bool _read(__uint128_t& x){
if(!skip())return false;
if(rdLeft+40>=rdRight)reload();
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(rdbuf[rdLeft++]^48);
}
return true;
}
template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x=x*10+(rdbuf[rdLeft++]^48);
}
if(rdbuf[rdLeft]!='.')return true;
rdLeft++;
T base=.1;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x+=base*(rdbuf[rdLeft++]^48);
base*=.1;
}
if(neg)x=-x;
return true;
}
inline bool _read(char& x){
if(!skip())return false;
if(rdLeft+1>=rdRight)reload();
x=rdbuf[rdLeft++];
return true;
}
inline bool _read(string& x){
if(!skip())return false;
for(;;){
int pos=rdLeft;
while(pos<rdRight and rdbuf[pos]>' ')pos++;
x.append(rdbuf+rdLeft,pos-rdLeft);
if(rdLeft==pos)break;
rdLeft=pos;
if(rdLeft==rdRight)reload();
else break;
}
return true;
}
template<typename T>inline bool _read(vector<T>& v){
for(auto& x:v){
if(!_read(x))return false;
}
return true;
}
char wtbuf[L],tmp[50];
int wtRight=0;
inline void flush(){
fwrite(wtbuf,1,wtRight,stdout);
wtRight=0;
}
inline void _write(const char& x){
if(wtRight>L-32)flush();
wtbuf[wtRight++]=x;
}
inline void _write(const string& x){
for(auto& c:x)_write(c);
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){
if(wtRight>L-32)flush();
if(x==0){
_write('0');
return;
}
else if(x<0){
_write('-');
if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) {
switch (sizeof(x)) {
case 2: _write("32768"); return;
case 4: _write("2147483648"); return;
case 8: _write("9223372036854775808"); return;
}
}
x=-x;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
inline void _write(__int128_t x){
if(wtRight>L-40)flush();
if(x==0){
_write('0');
return;
}
else if(x<0){
_write('-');
x=-x;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
inline void _write(__uint128_t x){
if(wtRight>L-40)flush();
if(x==0){
_write('0');
return;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
template<typename T>inline void _write(const vector<T>& v){
rep(i,0,v.size()){
if(i)_write(' ');
_write(v[i]);
}
}
public:
FastIO(){}
~FastIO(){flush();}
inline void read(){}
template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){
assert(_read(head));
read(tail...);
}
template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');}
template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){
if(space)_write(' ');
_write(head);
write<ln,true>(tail...);
}
};
/**
* @brief Fast IO
*/
#line 3 "sol.cpp"
#line 2 "library/Math/modint.hpp"
template<int mod=1000000007>struct fp {
int v;
static constexpr int get_mod(){return mod;}
int inv() const{
int tmp,a=v,b=mod,x=1,y=0;
while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);
if(x<0){x+=mod;} return x;
}
fp(ll x=0){init(x%mod+mod);}
fp& init(ll x){v=(x<mod?x:x-mod); return *this;}
fp operator-()const{return fp()-*this;}
fp pow(ll t){assert(t>=0); fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;}
fp& operator+=(const fp& x){return init(v+x.v);}
fp& operator-=(const fp& x){return init(v+mod-x.v);}
fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;}
fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;}
fp operator+(const fp& x)const{return fp(*this)+=x;}
fp operator-(const fp& x)const{return fp(*this)-=x;}
fp operator*(const fp& x)const{return fp(*this)*=x;}
fp operator/(const fp& x)const{return fp(*this)/=x;}
bool operator==(const fp& x)const{return v==x.v;}
bool operator!=(const fp& x)const{return v!=x.v;}
friend istream& operator>>(istream& is,fp& x){return is>>x.v;}
friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;}
};
/**
* @brief Modint
*/
#line 2 "library/Convolution/ntt.hpp"
template<typename T,unsigned p=3>struct NTT{
vector<T> rt,irt;
NTT(int lg=21){
unsigned m=T::get_mod()-1; T prt=p;
rt.resize(lg); irt.resize(lg);
rep(k,0,lg){
rt[k]=-prt.pow(m>>(k+2));
irt[k]=rt[k].inv();
}
}
void ntt(vector<T>& f,bool inv=0){
int n=f.size();
if(inv){
for(int m=1;m<n;m<<=1){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j];
f[i]=x+y; f[j]=(x-y)*w;
} w*=irt[__builtin_ctz(++t)];
}
} T mul=T(n).inv(); rep(i,0,n)f[i]*=mul;
}else{
for(int m=n;m>>=1;){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j]*w;
f[i]=x+y; f[j]=x-y;
} w*=rt[__builtin_ctz(++t)];
}
}
}
}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0){
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m); rep(i,0,a.size()){res[i]=a[i];} ntt(res);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m); rep(i,0,b.size())c[i]=b[i];
ntt(c); rep(i,0,m)res[i]*=c[i];
} ntt(res,1); res.resize(n); return res;
}
};
/**
* @brief Number Theoretic Transform
*/
#line 2 "library/FPS/fps.hpp"
template<typename T>struct Poly:vector<T>{
Poly(int n=0){this->assign(n,T());}
Poly(const initializer_list<T> f):vector<T>::vector(f){}
Poly(const vector<T>& f){this->assign(ALL(f));}
T eval(const T& x){
T res;
for(int i=this->size()-1;i>=0;i--)res*=x,res+=this->at(i);
return res;
}
Poly rev()const{Poly res=*this; reverse(ALL(res)); return res;}
void shrink(){while(!this->empty() and this->back()==0)this->pop_back();}
Poly operator>>(int sz)const{
if((int)this->size()<=sz)return {};
Poly ret(*this);
ret.erase(ret.begin(),ret.begin()+sz);
return ret;
}
Poly operator<<(int sz)const{
Poly ret(*this);
ret.insert(ret.begin(),sz,T(0));
return ret;
}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0)const{
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m);
rep(i,0,a.size())res[i]=a[i];
NTT(res,0);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m);
rep(i,0,b.size())c[i]=b[i];
NTT(c,0);
rep(i,0,m)res[i]*=c[i];
}
NTT(res,1);
res.resize(n);
return res;
}
Poly square()const{return Poly(mult(*this,*this,1));}
Poly operator-()const{return Poly()-*this;}
Poly operator+(const Poly& g)const{return Poly(*this)+=g;}
Poly operator+(const T& g)const{return Poly(*this)+=g;}
Poly operator-(const Poly& g)const{return Poly(*this)-=g;}
Poly operator-(const T& g)const{return Poly(*this)-=g;}
Poly operator*(const Poly& g)const{return Poly(*this)*=g;}
Poly operator*(const T& g)const{return Poly(*this)*=g;}
Poly operator/(const Poly& g)const{return Poly(*this)/=g;}
Poly operator/(const T& g)const{return Poly(*this)/=g;}
Poly operator%(const Poly& g)const{return Poly(*this)%=g;}
pair<Poly,Poly> divmod(const Poly& g)const{
Poly q=*this/g,r=*this-g*q;
r.shrink();
return {q,r};
}
Poly& operator+=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]+=g[i];} return *this;
}
Poly& operator+=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]+=g; return *this;
}
Poly& operator-=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]-=g[i];} return *this;
}
Poly& operator-=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]-=g; return *this;
}
Poly& operator*=(const Poly& g){
*this=mult(*this,g,0);
return *this;
}
Poly& operator*=(const T& g){
rep(i,0,this->size())(*this)[i]*=g;
return *this;
}
Poly& operator/=(const Poly& g){
if(g.size()>this->size()){
this->clear(); return *this;
}
Poly g2=g;
reverse(ALL(*this));
reverse(ALL(g2));
int n=this->size()-g2.size()+1;
this->resize(n); g2.resize(n);
*this*=g2.inv(); this->resize(n);
reverse(ALL(*this));
shrink();
return *this;
}
Poly& operator/=(const T& g){
rep(i,0,this->size())(*this)[i]/=g;
return *this;
}
Poly& operator%=(const Poly& g){*this-=*this/g*g; shrink(); return *this;}
Poly diff()const{
Poly res(this->size()-1);
rep(i,0,res.size())res[i]=(*this)[i+1]*(i+1);
return res;
}
Poly inte()const{
Poly res(this->size()+1);
for(int i=res.size()-1;i;i--)res[i]=(*this)[i-1]/i;
return res;
}
Poly log()const{
assert(this->front()==1); const int n=this->size();
Poly res=diff()*inv(); res=res.inte();
res.resize(n); return res;
}
Poly shift(const int& c)const{
const int n=this->size();
Poly res=*this,g(n); g[0]=1; rep(i,1,n)g[i]=g[i-1]*c/i;
vector<T> fact(n,1);
rep(i,0,n){
if(i)fact[i]=fact[i-1]*i;
res[i]*=fact[i];
}
res=res.rev();
res*=g;
res.resize(n);
res=res.rev();
rep(i,0,n)res[i]/=fact[i];
return res;
}
Poly inv()const{
const int n=this->size();
Poly res(1); res.front()=T(1)/this->front();
for(int k=1;k<n;k<<=1){
Poly f(k*2),g(k*2);
rep(i,0,min(n,k*2))f[i]=(*this)[i];
rep(i,0,k)g[i]=res[i];
NTT(f,0);
NTT(g,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k){f[i]=0; f[i+k]=-f[i+k];}
NTT(f,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k)f[i]=res[i];
swap(res,f);
} res.resize(n); return res;
}
Poly exp()const{
const int n=this->size();
if(n==1)return Poly({T(1)});
Poly b(2),c(1),z1,z2(2);
b[0]=c[0]=z2[0]=z2[1]=1; b[1]=(*this)[1];
for(int k=2;k<n;k<<=1){
Poly y=b;
y.resize(k*2);
NTT(y,0);
z1=z2;
Poly z(k);
rep(i,0,k)z[i]=y[i]*z1[i];
NTT(z,1);
rep(i,0,k>>1)z[i]=0;
NTT(z,0);
rep(i,0,k)z[i]*=-z1[i];
NTT(z,1);
c.insert(c.end(),z.begin()+(k>>1),z.end());
z2=c;
z2.resize(k*2);
NTT(z2,0);
Poly x=*this;
x.resize(k);
x=x.diff();x.resize(k);
NTT(x,0);
rep(i,0,k)x[i]*=y[i];
NTT(x,1);
Poly bb=b.diff();
rep(i,0,k-1)x[i]-=bb[i];
x.resize(k*2);
rep(i,0,k-1){x[k+i]=x[i]; x[i]=0;}
NTT(x,0);
rep(i,0,k*2)x[i]*=z2[i];
NTT(x,1);
x.pop_back();
x=x.inte();
rep(i,k,min(n,k*2))x[i]+=(*this)[i];
rep(i,0,k)x[i]=0;
NTT(x,0);
rep(i,0,k*2)x[i]*=y[i];
NTT(x,1);
b.insert(b.end(),x.begin()+k,x.end());
} b.resize(n); return b;
}
Poly pow(ll t){
if(t==0){
Poly res(this->size()); res[0]=1;
return res;
}
int n=this->size(),k=0; while(k<n and (*this)[k]==0)k++;
Poly res(n); if(__int128_t(t)*k>=n)return res;
n-=t*k; Poly g(n); T c=(*this)[k],ic=c.inv();
rep(i,0,n)g[i]=(*this)[i+k]*ic;
g=g.log(); for(auto& x:g)x*=t; g=g.exp();
c=c.pow(t); rep(i,0,n)res[i+t*k]=g[i]*c; return res;
}
void NTT(vector<T>& a,bool inv)const;
};
/**
* @brief Formal Power Series (NTT-friendly mod)
*/
#line 7 "sol.cpp"
using Fp=fp<998244353>;
NTT<Fp,3> ntt;
template<>void Poly<Fp>::NTT(vector<Fp>& v,bool inv)const{return ntt.ntt(v,inv);}
#line 2 "library/Math/matrix.hpp"
template<class T>struct Matrix{
int h,w; vector<vector<T>> val; T det;
Matrix(){}
Matrix(int n):h(n),w(n),val(vector<vector<T>>(n,vector<T>(n))){}
Matrix(int n,int m):h(n),w(m),val(vector<vector<T>>(n,vector<T>(m))){}
vector<T>& operator[](const int i){return val[i];}
Matrix& operator+=(const Matrix& m){
assert(h==m.h and w==m.w);
rep(i,0,h)rep(j,0,w)val[i][j]+=m.val[i][j];
return *this;
}
Matrix& operator-=(const Matrix& m){
assert(h==m.h and w==m.w);
rep(i,0,h)rep(j,0,w)val[i][j]-=m.val[i][j];
return *this;
}
Matrix& operator*=(const Matrix& m){
assert(w==m.h);
Matrix<T> res(h,m.w);
rep(i,0,h)rep(j,0,m.w)rep(k,0,w)res.val[i][j]+=val[i][k]*m.val[k][j];
*this=res; return *this;
}
Matrix operator+(const Matrix& m)const{return Matrix(*this)+=m;}
Matrix operator-(const Matrix& m)const{return Matrix(*this)-=m;}
Matrix operator*(const Matrix& m)const{return Matrix(*this)*=m;}
Matrix pow(ll k){
Matrix<T> res(h,h),c=*this; rep(i,0,h)res.val[i][i]=1;
while(k){if(k&1)res*=c; c*=c; k>>=1;} return res;
}
vector<int> gauss(int c=-1){
if(val.empty())return {};
if(c==-1)c=w;
int cur=0; vector<int> res; det=1;
rep(i,0,c){
if(cur==h)break;
rep(j,cur,h)if(val[j][i]!=0){
swap(val[cur],val[j]);
if(cur!=j)det*=-1;
break;
}
det*=val[cur][i];
if(val[cur][i]==0)continue;
rep(j,0,h)if(j!=cur){
T z=val[j][i]/val[cur][i];
rep(k,i,w)val[j][k]-=val[cur][k]*z;
}
res.push_back(i);
cur++;
}
return res;
}
pair<T,Matrix> inv(){
assert(h==w);
Matrix base(h,h*2),res(h,h);
rep(i,0,h)rep(j,0,h)base[i][j]=val[i][j];
rep(i,0,h)base[i][h+i]=1;
base.gauss(h);
det=1;
rep(i,0,h){
if(base[i][i]==0)return {0,res};
det*=base[i][i];
rep(j,0,h)res[i][j]=base[i][h+j]/base[i][i];
}
return {det,res};
}
bool operator==(const Matrix& m){
assert(h==m.h and w==m.w);
rep(i,0,h)rep(j,0,w)if(val[i][j]!=m.val[i][j])return false;
return true;
}
bool operator!=(const Matrix& m){
assert(h==m.h and w==m.w);
rep(i,0,h)rep(j,0,w)if(val[i][j]==m.val[i][j])return false;
return true;
}
friend istream& operator>>(istream& is,Matrix& m){
rep(i,0,m.h)rep(j,0,m.w)is>>m[i][j];
return is;
}
friend ostream& operator<<(ostream& os,Matrix& m){
rep(i,0,m.h){
rep(j,0,m.w)os<<m[i][j]<<(j==m.w-1 and i!=m.h-1?'\n':' ');
}
return os;
}
};
/**
* @brief Matrix
*/
#line 2 "library/Math/charpoly.hpp"
template<typename T>vector<T> CharPoly(Matrix<T> a){
// to Hessenberg
//reference:http://www.oishi.info.waseda.ac.jp/~samukawa/eigvieta.pdf
int n=a.h;
rep(s,0,n-2){
rep(j,s+1,n)if(a[j][s]!=0){
swap(a[j],a[s+1]);
rep(i,0,n)swap(a[i][j],a[i][s+1]);
break;
}
if(a[s+1][s]==0)continue;
T X=T(1)/a[s+1][s];
rep(i,s+2,n){
T base=a[i][s]*X;
rep(j,0,n)a[i][j]-=a[s+1][j]*base;
rep(j,0,n)a[j][s+1]+=a[j][i]*base;
}
}
vector dp(n+1,vector<T>(n+1));
dp[0][0]=1;
rep(i,0,n){
rep(k,0,i+1){
dp[i+1][k+1]+=dp[i][k];
dp[i+1][k]-=dp[i][k]*a[i][i];
}
T prod=1;
for(int j=i-1;j>=0;j--){
prod*=a[j+1][j];
T base=prod*a[j][i];
rep(k,0,i+1)dp[i+1][k]-=dp[j][k]*base;
}
}
return dp[n];
}
/**
* @brief Characteristic Polynomial
*/
#line 2 "library/Utility/random.hpp"
struct Random{
random_device rnd;
unsigned x=123456789,y=362436069,z=521288629,w=rnd();
Random(){}
unsigned get(){
unsigned t=x^(x<<11);
x=y,y=z,z=w;
return w=(w^(w<<19))^(t^(t>>8));
}
unsigned get(unsigned L){
return get()%(L+1);
}
template<typename T>T get(T L,T R){
return get(R-L)+L;
}
double uniform(){
return double(get())/UINT_MAX;
}
string str(int n){
string ret;
rep(i,0,n)ret+=get('a','z');
return ret;
}
template<typename Iter>void shuffle(Iter first,Iter last){
if(first==last)return;
int len=1;
for(auto it=first+1;it!=last;it++){
len++;
int j=get(0,len-1);
if(j!=len-1)iter_swap(it,first+j);
}
}
template<typename T>vector<T> select(int n,T L,T R){
set<T> ret;
while(ret.size()<n)ret.insert(get(L,R));
return {ALL(ret)};
}
};
/**
* @brief Random
*/
#line 14 "sol.cpp"
template<typename T>vector<T> det_ApBx(Matrix<T> a,Matrix<T> b){
Random gen;
int n=a.h;
Poly<T> f(n+1);
T ran=gen.get();
rep(i,0,n)rep(j,0,n)a[i][j]+=b[i][j]*ran;
auto [det,ainv]=a.inv();
if(det==0)return f;
b*=ainv;
rep(i,0,n)rep(j,0,n)b[i][j]=-b[i][j];
f=CharPoly(b);
reverse(ALL(f));
for(auto& x:f)x*=det;
return f.shift((-ran).v);
}
FastIO io;
int main(){
int n;
io.read(n);
Matrix<Fp> a(n,n),b(n,n);
rep(i,0,n)rep(j,0,n)io.read(a[i][j].v);
rep(i,0,n)rep(j,0,n)io.read(b[i][j].v);
auto ret=det_ApBx(a,b);
rep(i,0,n+1)io.write(ret[i].v);
return 0;
}
tko919