結果

問題 No.2377 SUM AND XOR on Tree
ユーザー 👑 p-adic
提出日時 2023-10-08 15:40:18
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 785 ms / 4,000 ms
コード長 31,568 bytes
コンパイル時間 13,652 ms
コンパイル使用メモリ 307,368 KB
最終ジャッジ日時 2025-02-17 06:17:25
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode ); if( exec_mode == debug_mode || exec_mode ==
      library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){
      SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode
      ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode
      ){ CERR( "" ); cin >> test_case_num; } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )
      ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ cin >> A; ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){
      CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); }
#define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << " " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << " "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << " "; OUTPUT_ITR( cout , A ) << endl
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1
      ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
template <typename INT> using T2 = pair<INT,INT>;
template <typename INT> using T3 = tuple<INT,INT,INT>;
template <typename INT> using T4 = tuple<INT,INT,INT,INT>;
using path = pair<int,ll>;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" );
    } Solve(); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
#define CIN_A( LL , A , N ) LL A[N]; SET_A( A , N );
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?""
    :" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR =
    ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =
    ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":"
    , naive , match ? "==" : "!=" , answer ); if( !match ){ return; }
//
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,
    ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const
    char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os
    << arg; }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits
    >& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }
//
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
inline ll MIN( const ll& a , const ll& b ){ return min( a , b ); }
inline ull MIN( const ull& a , const ull& b ){ return min( a , b ); }
inline ll MAX( const ll& a , const ll& b ){ return max( a , b ); }
inline ull MAX( const ull& a , const ull& b ){ return max( a , b ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( "" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , "-" , TARGET , "
          =" , VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
CERR( "" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , ( EXPRESSION >
        TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) , TARGET ); \
if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \
CERR( "" ); \
} else { \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} \
} else { \
CERR( " " , MINIMUM , ">" , MAXIMUM ); \
ANSWER = MAXIMUM + 1; \
} \
// 調EXPRESSION >= TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION >= TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;
    } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }
    auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }
//
template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline T xor_add( const T& t0 , const T& t1 ){ return t0 ^ t1; }
template <typename T> inline T multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
template <typename T> inline const T& zero() { static const T z = 0; return z; }
template <typename T> inline const T& one() { static const T o = 1; return o; }\
template <typename T> inline T add_inv( const T& t ) { return -t; }
template <typename T> inline T id( const T& v ) { return v; }
//
int H , W , H_minus , W_minus , HW;
vector<vector<bool> > non_wall;
inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
const string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)
inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// v->w
inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}
// U<->DR<->L
inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v =
    EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v
    );}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<path> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const
    int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1
    )].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
inline void SetWallOnGrid( const string& Si , const int& i , vector<vector<bool> >& non_wall , const char& walkable = '.' , const char& unwalkable =
    '#' ){non_wall.push_back(vector<bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable
    ),false);}}
//
template <typename PATH> list<PATH> E( const int& i );
template <typename PATH> vector<list<PATH> > e;
//
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void AutoCheck( int& exec_mode );
inline void Solve();
inline void Experiment();
inline void SmallTest();
inline void RandomTest();
ll GetRand( const ll& Rand_min , const ll& Rand_max );
int exec_mode;
CEXPR( int , solve_mode , 0 );
CEXPR( int , debug_mode , 1 );
CEXPR( int , library_search_mode , 2 );
CEXPR( int , experiment_mode , 3 );
CEXPR( int , small_test_mode , 4 );
CEXPR( int , random_test_mode , 5 );
#endif
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
/*
C-x 3 C-x o C-x C-f
BIT:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txt
BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt
DFS on Tree:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepththFirstSearch/Tree/compress.txt
Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
Mod:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt
Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
*/
// VVV
#define DC_OF_FIRST_SEARCH(BREADTH)TE <int V_max> CL BREADTH ## FirstSearch_Body{PU:int m_V;int m_init;LI<int> m_next;bool m_found[V_max];int
    m_prev[V_max];IN BREADTH ## FirstSearch_Body(CRI V);IN BREADTH ## FirstSearch_Body(CRI V,CRI init);IN VO Reset(CRI init);IN VO Shift(CRI init);IN
    CRI SZ()CO;IN CRI init()CO;IN bool& found(CRI i);IN CRI prev(CRI i)CO;int Next();virtual LI<int> e(CRI t)= 0;};TE <int V_max,LI<int> E(CRI)> CL
    BREADTH ## FirstSearch:PU BREADTH ## FirstSearch_Body<V_max>{PU:TE<TY... Args> IN BREADTH ## FirstSearch(CO Args&... args);IN LI<int> e(CRI t);}
    ;TE <int V_max,LI<int> E(CRI)> VO BREADTH ## FirstConnectedComponent(CRI V,int(&vertex)[V_max],int& count);
#define DF_OF_FIRST_SEARCH(BREADTH,PUSH)TE <int V_max> IN BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body(CRI V):m_V(V),m_init
    (),m_next(),m_found(),m_prev(){assert(m_V <= V_max);for(int i = 0;i < m_V;i++){m_prev[i] = -1;}}TE <int V_max> IN BREADTH ## FirstSearch_Body
    <V_max>::BREADTH ## FirstSearch_Body(CRI V,CRI init):BREADTH ## FirstSearch_Body(V){m_init = init;m_next.push_back(m_init);m_found[m_init] = true
    ;}TE <int V_max,LI<int> E(CRI)> TE <TY... Args> IN BREADTH ## FirstSearch<V_max,E>::BREADTH ## FirstSearch(CO Args&... args):BREADTH ##
    FirstSearch_Body<V_max>(args...){}TE <int V_max> IN VO BREADTH ## FirstSearch_Body<V_max>::Reset(CRI init){m_init = init;assert(m_init < m_V
    );m_next.clear();m_next.push_back(m_init);for(int i = 0;i < m_V;i++){m_found[i] = i == m_init;m_prev[i] = -1;}}TE <int V_max> IN VO BREADTH ##
    FirstSearch_Body<V_max>::Shift(CRI init){m_init = init;assert(m_init < m_V);m_next.clear();if(! m_found[m_init]){m_next.push_back(m_init
    );m_found[m_init] = true;}}TE <int V_max> IN CRI BREADTH ## FirstSearch_Body<V_max>::SZ()CO{RE m_V;}TE <int V_max> IN CRI BREADTH ##
    FirstSearch_Body<V_max>::init()CO{RE m_init;}TE <int V_max> IN bool& BREADTH ## FirstSearch_Body<V_max>::found(CRI i){assert(i < m_V);RE
    m_found[i];}TE <int V_max> IN CRI BREADTH ## FirstSearch_Body<V_max>::prev(CRI i)CO{assert(i < m_V);RE m_prev[i];}TE <int V_max> int BREADTH ##
    FirstSearch_Body<V_max>::Next(){if(m_next.empty()){RE -1;}CO int i_curr = m_next.front();m_next.pop_front();LI<int> edge = e(i_curr);WH(! edge
    .empty()){CRI i = edge.front();bool& found_i = m_found[i];if(! found_i){m_next.PUSH(i);m_prev[i] = i_curr;found_i = true;}edge.pop_front();}RE
    i_curr;}TE <int V_max,LI<int> E(CRI)> IN LI <int> BREADTH ## FirstSearch<V_max,E>::e(CRI t){RE E(t);}TE <int V_max,LI<int> E(CRI)> VO BREADTH ##
    FirstConnectedComponentSearch(CRI V,int(&vertex)[V_max],int& count){BREADTH ## FirstSearch<V_max,E> bfs{V};count = 0;for(int i = 0;i < V;i
    ++){vertex[i] = -1;}for(int i = 0;i < V;i++){if(vertex[i] == -1){bfs.Shift(i);int j = bfs.Next();WH(j != -1?vertex[j] == 0:false){vertex[j] =
    count;j = bfs.Next();}count++;}}RE;}
DC_OF_FIRST_SEARCH(Depth);DF_OF_FIRST_SEARCH(Depth,push_front);
TE <int V_max,LI<int> E(CRI),int digit = 0>CL DepthFirstSearchOnTree:PU DepthFirstSearch<V_max,E>{PU:int m_reversed[V_max];VE<VE<int> > m_children;VE
    <int> m_children_num;bool m_set_children;VE<int> m_depth;bool m_set_depth;VE<int> m_height;bool m_set_height;VE<int> m_weight;bool m_set_weight
    ;VE<int> m_doubling[digit];bool m_set_doubling;IN DepthFirstSearchOnTree(CRI V,CRI root);IN VO Reset(CRI init)= delete;IN VO Shift(CRI init)=
    delete;IN CRI Root()CO;IN CRI Parent(CRI i)CO;IN CO VE<int>& Children(CRI i);IN CRI Depth(CRI i)CO;IN CRI Height(CRI i);IN CRI Weight(CRI i);IN
    CRI NodeNumber(CRI i,CO bool& reversed = false)CO;IN CRI ChildrenNumber(CRI i);int Ancestor(int i,int n);int LCA(int i,int j);int LCA(int i,int j
    ,int& i_prev,int& j_prev);TE <TY T,T f(const list<T>&,const int&)>T RootingDP();TE <TY T,T m_T(CO T&,CO T&),CO T& e_T(),T f(CO T&,CRI)> VO
    RerootingDP(T(&d)[V_max]);VO SetChildren();VO SetDepth();VO SetHeight();VO SetWeight();VO SetDoubling();};
TE <int V_max,LI<int> E(CRI),int digit> IN DepthFirstSearchOnTree<V_max,E,digit>::DepthFirstSearchOnTree(CRI V,CRI root):DepthFirstSearch<V_max,E>(V
    ,root),m_reversed(),m_children(),m_set_children(),m_depth(),m_set_depth(),m_height(),m_set_height(),m_weight(),m_set_weight(),m_doubling
    (),m_set_doubling(){int n = DepthFirstSearch<V_max,E>::SZ();WH(--n >= 0){m_reversed[n] = DepthFirstSearch<V_max,E>::Next();}}TE <int V_max,LI<int
    > E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Root()CO{RE DepthFirstSearch<V_max,E>::init();}TE <int V_max,LI<int> E(CRI),int
    digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Parent(CRI i)CO{RE DepthFirstSearch<V_max,E>::prev(i);}TE <int V_max,LI<int> E(CRI),int
    digit> IN CO VE<int>& DepthFirstSearchOnTree<V_max,E,digit>::Children(CRI i){if(! m_set_children){SetChildren();}RE m_children[i];}TE <int V_max
    ,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Depth(CRI i)CO{if(! m_set_depth){SetDepth();}RE m_depth[i];}TE <int
    V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Height(CRI i){if(! m_set_height){SetHeight();}RE m_height[i];}TE
    <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::Weight(CRI i){if(! m_set_weight){SetWeight();}RE m_weight[i]
    ;}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E,digit>::NodeNumber(CRI i,CO bool& reversed)CO{RE
    m_reversed[reversed?i:DepthFirstSearch<V_max,E>::SZ()- 1 - i];}TE <int V_max,LI<int> E(CRI),int digit> IN CRI DepthFirstSearchOnTree<V_max,E
    ,digit>::ChildrenNumber(CRI i){if(! m_set_children){SetChildren();}RE m_children_num[i];}TE <int V_max,LI<int> E(CRI),int digit>int
    DepthFirstSearchOnTree<V_max,E,digit>::Ancestor(int i,int n){if(! m_set_doubling){SetDoubling();}assert((n >> digit)== 0);int d = 0;WH(n != 0){if
    ((n & 1)== 1){assert((i = m_doubling[d][i])!= -1);}d++;n >>= 1;}RE i;}TE <int V_max,LI<int> E(CRI),int digit>int DepthFirstSearchOnTree<V_max,E
    ,digit>::LCA(int i,int j){int diff = Depth(i)- Depth(j);if(diff < 0){swap(i,j);diff *= -1;}i = Ancestor(i,diff);if(i == j){RE i;}int d = digit;WH
    (--d >= 0){CO int(&doubling_d)[V_max] = m_doubling[d];CRI doubling_d_i = doubling_d[i];CRI doubling_d_j = doubling_d[j];if(doubling_d_i !=
    doubling_d_j){i = doubling_d_i;j = doubling_d_j;assert(i != -1);assert(j != -1);}}RE Parent(i);}TE <int V_max,LI<int> E(CRI),int digit>int
    DepthFirstSearchOnTree<V_max,E,digit>::LCA(int i,int j,int& i_prev,int& j_prev){if(i == j){i_prev = j_prev = -1;RE i;}int diff = Depth(i)- Depth
    (j);if(diff < 0){RE LCA(j,i,j_prev,i_prev);}if(diff > 0){i_prev = Ancestor(i,diff - 1);i = Parent(i_prev);assert(i != -1);if(i == j){j_prev = -1
    ;RE i;}}else if(! m_set_doubling){SetDoubling();}int d = digit;WH(--d >= 0){CO int(&doubling_d)[V_max] = m_doubling[d];CRI doubling_d_i =
    doubling_d[i];CRI doubling_d_j = doubling_d[j];if(doubling_d_i != doubling_d_j){i = doubling_d_i;j = doubling_d_j;assert(i != -1);assert(j != -1
    );}}i_prev = i;j_prev = j;RE Parent(i_prev);}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetChildren
    (){assert(!m_set_children);m_set_children = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_children.resize(V);m_children_num.resize(V);for(int i
    = 0;i < V;i++){CRI j = Parent(i);if(j == -1){m_children_num[i] = -1;}else{VE<int>& m_children_j = m_children[j];m_children_num[i] = m_children_j
    .SZ();m_children_j.push_back(i);}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetDepth(){assert
    (!m_set_depth);m_set_depth = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_depth.resize(V);for(int i = 0;i < V;i++){CRI parent_i = Parent(i);if
    (parent_i != -1){m_depth[i] = m_depth[parent_i] + 1;}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit
    >::SetHeight(){assert(!m_set_height);m_set_height = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_height.resize(V);for(int i = 0;i < V;i++){CRI
    reversed_i = m_reversed[i];CRI parent_i = Parent(reversed_i);if(parent_i != -1){int& height_parent_i = m_height[parent_i];CRI height_i =
    m_height[reversed_i];height_parent_i > height_i?height_parent_i:height_parent_i = height_i + 1;}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO
    DepthFirstSearchOnTree<V_max,E,digit>::SetWeight(){assert(!m_set_weight);m_set_weight = true;CRI V = DepthFirstSearch<V_max,E>::SZ();m_weight
    .resize(V);for(int i = 0;i < V;i++){CRI reversed_i = m_reversed[i];CRI parent_i = Parent(reversed_i);if(parent_i != -1){m_weight[parent_i] +=
    m_weight[reversed_i] + 1;}}RE;}TE <int V_max,LI<int> E(CRI),int digit>VO DepthFirstSearchOnTree<V_max,E,digit>::SetDoubling(){assert
    (!m_set_doubling);m_set_doubling = true;CRI V = DepthFirstSearch<V_max,E>::SZ();{VE<int>& doubling_0 = m_doubling[0];doubling_0.reserve(V);CRI r
    = Root();for(int i = 0;i < V;i++ ){doubling_0.push_back(Parent(i));}}for(int d = 1;d < digit;d++ ){VE<int>& doubling_d = m_doubling[d];VE<int>&
    doubling_d_minus = m_doubling[d-1];doubling_d.reserve(V);for(int i = 0;i < V;i++){CRI doubling_d_minus_i = doubling_d_minus[i];doubling_d
    .push_back(doubling_d_minus_i == -1?-1:doubling_d_minus[doubling_d_minus_i]);}}}TE <int V_max,LI<int> E(CRI),int digit> TE <TY T,T f(const list<T
    >&,const int&)>T DepthFirstSearchOnTree<V_max,E,digit>::RootingDP(){if(! m_set_children){SetChildren();}CRI V = DepthFirstSearch<V_max,E>::SZ
    ();LI<T> children_value[V_max] = {};T temp;for(int n = 0;n < V;n++){CRI i = NodeNumber(n,true);CRI j = Parent(i);temp = f(children_value[i],i);if
    (j != -1){children_value[j].push_back(temp);}}RE temp;}TE <int V_max,LI<int> E(CRI),int digit> TE <TY T,T m_T(CO T&,CO T&),CO T& e_T(),T f(CO T&
    ,CRI)>VO DepthFirstSearchOnTree<V_max,E,digit>::RerootingDP(T(&d)[V_max]){if(! m_set_children){SetChildren();}CRI V = DepthFirstSearch<V_max,E
    >::SZ();CO T& e = e_T();VE<T> children_value[V_max] ={};VE<T> left_sum[V_max] ={};VE<T> right_sum[V_max] ={};for(int i = 0;i < V;i
    ++){children_value[i].resize(m_children[i].SZ());}for(int n = 0;n < V;n++){CRI i = NodeNumber(n,true);CO VE<T>& children_value_i =
    children_value[i];CO int SZ_i = children_value_i.SZ();T temp = e;VE<T>& left_sum_i = left_sum[i];left_sum_i.reserve(SZ_i + 1);left_sum_i
    .push_back(temp);for(int m = 0;m < SZ_i;m++){left_sum_i.push_back(temp = m_T(temp,children_value_i[m]));}CRI j = Parent(i);if(j != -1
    ){children_value[j][m_children_num[i]] = f(temp,i);}temp = e;VE<T>& right_sum_i = right_sum[i];right_sum_i.resize(SZ_i);for(int m = 1;m <= SZ_i;m
    ++){right_sum_i[ SZ_i - m ] = temp;temp = m_T(children_value_i[SZ_i - m],temp);}}for(int n = 1;n < V;n++){CRI i = NodeNumber(n);CRI j = Parent(i
    );CRI k = ChildrenNumber(i);VE<T>& left_sum_i = left_sum[i];VE<T>& right_sum_i = right_sum[i];CO int SZ_i = right_sum_i.SZ();CO T rest_i = f(m_T
    (left_sum[j][k],right_sum[j][k]),j);for(int m = 0;m <= SZ_i;m++){T& left_sum_im = left_sum_i[m];left_sum_im = m_T(rest_i,left_sum_im);}}for(int i
    = 0;i < V;i++){d[i] = f(left_sum[i].back(),i);}RE;}
// AAA
// H,W,e<PATH>
template <typename PATH> list<PATH> E( const int& i )
{
// list<PATH> answer{};
list<PATH> answer = e<PATH>[i];
// VVV
// AAA
return answer;
}
DEXPR( int , bound_N , 100000 , 100 ); // 05
using T = vector<vector<ll> >;
T A[bound_N] = {};
CEXPR( ll , P , 998244353 );
T f( const list<T>& a , const int& i )
{
T& temp = A[i];
FOR_ITR( a ){
if( temp.empty() ){
temp = *itr;
} else if( ! itr->empty() ){
T answer = T( 30 , { 0 , 0 } );
FOR( d , 0 , 30 ){
FOR( is , 0 , 2 ){
( answer[d][is] += temp[d][is] * ( *itr )[d][1] ) %= P;
( answer[d][is ^ 0] += temp[d][is] * ( *itr )[d][0] ) %= P;
( answer[d][is ^ 1] += temp[d][is] * ( *itr )[d][1] ) %= P;
}
}
temp = move( answer );
}
}
return move( temp );
}
ll Naive( int N , int M , int K )
{
ll answer = N + M + K;
return answer;
}
ll Answer( ll N , ll M , ll K )
{
// START_WATCH;
ll answer = N + M + K;
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
return answer;
}
inline void Solve()
{
CIN_ASSERT( N , 1 , bound_N );
e<int>.resize( N );
FOR( n , 1 , N ){
CIN_ASSERT( u , 1 , N );
CIN_ASSERT( v , 1 , N );
u--;
v--;
e<int>[u].push_back( v );
e<int>[v].push_back( u );
}
CEXPR( int , bound_Ai , ( 1 << 30 ) - 1 );
FOR( i , 0 , N ){
CIN_ASSERT( Ai , 0 , bound_Ai );
T& A_i = A[i] = T( 30 , { 0 , 0 } );
FOR( d , 0 , 30 ){
A_i[d][ ( Ai >> d ) & 1 ] = 1;
}
}
DepthFirstSearchOnTree<bound_N,E<int> > dfst{ N , 0 };
T val = dfst.RootingDP<T,f>();
ll answer = 0;
ll power = 1;
FOR( d , 0 , 30 ){
( answer += val[d][1] * power ) %= P;
( power <<= 1 ) < P ? power : power -= P;
}
RETURN( answer );
}
inline void Experiment()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COUT( N , M , K , ":" , Naive( N , M , K ) );
// }
// }
// // cout << Naive( N ) << ",\n"[N==bound];
// }
}
inline void SmallTest()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COMPARE( N , M , K );
// }
// }
// // COMPARE( N );
// }
}
REPEAT_MAIN(1);
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0