結果

問題 No.2497 GCD of LCMs
ユーザー mkawa2mkawa2
提出日時 2023-10-08 16:29:12
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 354 ms / 2,000 ms
コード長 2,934 bytes
コンパイル時間 332 ms
コンパイル使用メモリ 82,520 KB
実行使用メモリ 79,200 KB
最終ジャッジ日時 2024-07-26 18:08:31
合計ジャッジ時間 3,944 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 51 ms
63,360 KB
testcase_01 AC 51 ms
63,104 KB
testcase_02 AC 51 ms
63,744 KB
testcase_03 AC 49 ms
63,104 KB
testcase_04 AC 51 ms
63,360 KB
testcase_05 AC 51 ms
63,232 KB
testcase_06 AC 61 ms
66,432 KB
testcase_07 AC 145 ms
77,952 KB
testcase_08 AC 204 ms
77,952 KB
testcase_09 AC 229 ms
78,592 KB
testcase_10 AC 278 ms
78,668 KB
testcase_11 AC 207 ms
78,592 KB
testcase_12 AC 343 ms
78,588 KB
testcase_13 AC 351 ms
78,828 KB
testcase_14 AC 204 ms
78,648 KB
testcase_15 AC 200 ms
79,200 KB
testcase_16 AC 354 ms
79,020 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys

# sys.setrecursionlimit(200005)
# sys.set_int_max_str_digits(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()

dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
# inf = -1-(-1 << 31)
inf = -1-(-1 << 63)
# md = 10**9+7
md = 998244353

from collections import Counter

class Sieve:
    def __init__(self, n):
        self.plist = [2]
        min_prime_factor = [2, 0]*(n//2+1)
        for x in range(3, n+1, 2):
            if min_prime_factor[x] == 0:
                min_prime_factor[x] = x
                self.plist.append(x)
                if x**2 > n: continue
                for y in range(x**2, n+1, 2*x):
                    if min_prime_factor[y] == 0:
                        min_prime_factor[y] = x
        self.min_prime_factor = min_prime_factor

    def isprime(self, x):
        return self.min_prime_factor[x] == x

    def pf(self, x):
        pp, ee = [], []
        while x > 1:
            mpf = self.min_prime_factor[x]
            if pp and mpf == pp[-1]:
                ee[-1] += 1
            else:
                pp.append(mpf)
                ee.append(1)
            x //= mpf
        return pp, ee

    # unsorted
    def factor(self, a):
        ff = [1]
        pp, ee = self.pf(a)
        for p, e in zip(pp, ee):
            ff, gg = [], ff
            w = p
            for _ in range(e):
                for f in gg: ff.append(f*w)
                w *= p
            ff += gg
        return ff

sv = Sieve(31596)
primes = sv.plist
def prime_factorization(a):
    res = Counter()
    for p in primes:
        while a%p == 0:
            a //= p
            res[p] += 1
    if a > 1:
        res[a] = 1
    return res

from heapq import *

def dijkstra(p, root=0):
    n = len(to)
    dist = [inf]*n
    dist[root] = cnt[root][p]
    hp = [(dist[root], root)]
    while hp:
        d, u = heappop(hp)
        if d > dist[u]: continue
        for v in to[u]:
            nd = max(d,cnt[v][p])
            if dist[v] <= nd: continue
            dist[v] = nd
            heappush(hp, (nd, v))

    return dist


n,m=LI()
aa=LI()
to=[[] for _ in range(n)]
for _ in range(m):
    u,v=LI1()
    to[u].append(v)
    to[v].append(u)
cnt=[]
pp=set()
for a in aa:
    c=prime_factorization(a)
    for p in c:pp.add(p)
    cnt.append(c)

dp=[1]*n
for p in pp:
    dist=dijkstra(p,0)
    for u in range(n):
        dp[u]*=pow(p,dist[u],md)
        dp[u]%=md

print(*dp,sep="\n")
0