結果
問題 | No.2497 GCD of LCMs |
ユーザー |
👑 |
提出日時 | 2023-10-08 21:12:07 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 233 ms / 2,000 ms |
コード長 | 40,670 bytes |
コンパイル時間 | 14,306 ms |
コンパイル使用メモリ | 321,540 KB |
最終ジャッジ日時 | 2025-02-17 06:20:32 |
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 14 |
ソースコード
#ifdef DEBUG#define _GLIBCXX_DEBUG#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode ); if( exec_mode == debug_mode || exec_mode ==library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode){ CERR( "ランダムテストを行う回数を指定してください。" ); cin >> test_case_num; } FINISH_MAIN#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )); assert( ( MIN ) <= A && A <= ( MAX ) )#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ cin >> A; ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); }#define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' )#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl#define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl#define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl#define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl#else#pragma GCC optimize ( "O3" )#pragma GCC optimize ( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )#define SOLVE_ONLY#define CERR( ... )#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"#define CERR_A( A , N )#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"#define CERR_ITR( A )#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"#endif#include <bits/stdc++.h>using namespace std;using uint = unsigned int;using ll = long long;using ull = unsigned long long;using ld = long double;using lld = __float128;template <typename INT> using T2 = pair<INT,INT>;template <typename INT> using T3 = tuple<INT,INT,INT>;template <typename INT> using T4 = tuple<INT,INT,INT,INT>;using path = pair<int,ll>;#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )#define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" );} Solve(); CERR( "" ); } }#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )#define TYPE_OF( VAR ) decay_t<decltype( VAR )>#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }#define CIN_A( LL , A , N ) LL A[N]; SET_A( A , N );#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR =ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":", naive , match ? "==" : "!=" , answer ); if( !match ){ return; }// 入出力用template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,ARGS&... args ) { return VariadicCin( is >> arg , args... ); }template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , constchar& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os<< arg; }template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }// 算術用template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }#define POWER( ANSWER , ARGUMENT , EXPONENT ) \static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \{ \TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \} \ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \ll ANSWER{ 1 }; \{ \ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \} \ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \} \} \#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \static ll ANSWER[CONSTEXPR_LENGTH]; \static ll ANSWER_INV[CONSTEXPR_LENGTH]; \static ll INVERSE[CONSTEXPR_LENGTH]; \{ \ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \FOREQ( i , 1 , MAX_INDEX ){ \ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \} \ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \FOREQ( i , 2 , MAX_INDEX ){ \ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (MODULO ) ) ) %= ( MODULO ); \} \} \// 二分探索テンプレート// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \ll ANSWER = MINIMUM; \if( MINIMUM <= MAXIMUM ){ \ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \CERR( "二分探索中:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , "-" , TARGET , "=" , VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \} else { \VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \} \ANSWER = UPDATE_ANSWER; \} \CERR( "二分探索終了:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , ( EXPRESSION >TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) , TARGET ); \if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \CERR( "二分探索成功" ); \} else { \CERR( "二分探索失敗" ); \ANSWER = MAXIMUM + 1; \} \} else { \CERR( "二分探索失敗: " , MINIMUM , ">" , MAXIMUM ); \ANSWER = MAXIMUM + 1; \} \// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \// t以下の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;} auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t未満の値が存在すればその最大値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }// t以上の値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }// tより大きい値が存在すればその最小値のiterator、存在しなければend()を返す。template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }// データ構造用template <typename T> inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; }template <typename T> inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; }template <typename T> inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; }template <typename T> inline const T& Zero() { static const T z = 0; return z; }template <typename T> inline const T& One() { static const T o = 1; return o; }\template <typename T> inline T AddInv( const T& t ) { return -t; }template <typename T> inline T Id( const T& v ) { return v; }template <typename T> inline T Min( const T& a , const T& b ){ return a < b ? a : b; }template <typename T> inline T Max( const T& a , const T& b ){ return a < b ? b : a; }// グリッド問題用int H , W , H_minus , W_minus , HW;vector<vector<bool> > non_wall;inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; }inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }const string direction[4] = {"U","R","D","L"};// (i,j)->(k,h)の方向番号を取得inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}// v->wの方向番号を取得inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}// 方向番号の反転U<->D、R<->Linline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v =EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v);}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}inline void SetEdgeOnGrid( const string& Si , const int& i , list<path> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){constint v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1)].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}inline void SetWallOnGrid( const string& Si , const int& i , vector<vector<bool> >& non_wall , const char& walkable = '.' , const char& unwalkable ='#' ){non_wall.push_back(vector<bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable),false);}}// グラフ用関数template <typename PATH> list<PATH> E( const int& i );template <typename PATH> vector<list<PATH> > e;// デバッグ用#ifdef DEBUGinline void AlertAbort( int n ) { CERR("abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }void AutoCheck( int& exec_mode );inline void Solve();inline void Experiment();inline void SmallTest();inline void RandomTest();ll GetRand( const ll& Rand_min , const ll& Rand_max );int exec_mode;CEXPR( int , solve_mode , 0 );CEXPR( int , debug_mode , 1 );CEXPR( int , library_search_mode , 2 );CEXPR( int , experiment_mode , 3 );CEXPR( int , small_test_mode , 4 );CEXPR( int , random_test_mode , 5 );#endif// 圧縮用#define TE template#define TY typename#define US using#define ST static#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&/*C-x 3 C-x o C-x C-fによるファイル操作用BIT:c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txtBFS:c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txtDFS on Tree:c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepththFirstSearch/Tree/compress.txtDivisor:c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txtMod:c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txtPolynomialc:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt*/// VVV ライブラリは以下に挿入する。#define DIJKSTRA_BODY( SET_FOUND , SET_WEIGHT , UPDATE_FOUND , CHECK_FOUND , INITIALISE_PREV , SET_PREV ) \static const U& unit = Unit(); \assert( unit != m_found && unit < m_infty ); \const int i_start = e_inv( t_start ); \set<pair<U,int> > vertex{}; \SET_FOUND; \SET_WEIGHT; \vertex.insert( pair<U,int>( weight[i_start] = unit , i_start ) ); \INITIALISE_PREV; \\if( i_start != i_final ){ \\while( ! vertex.empty() ){ \\auto itr_vertex = vertex.begin(); \const pair<U,int> v = *itr_vertex; \const int& i = v.second; \const U& u = v.first; \UPDATE_FOUND; \vertex.erase( itr_vertex ); \const list<pair<T,U> > edge_i = E( e( i ) ); \list<pair<U,int> > changed_vertex{}; \\for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \\const int& j = e_inv( itr_edge_i->first ); \U& weight_j = weight[j]; \\if( CHECK_FOUND ){ \\const U& edge_ij = itr_edge_i->second; \const U temp = Addition( u , edge_ij ); \assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \\if( weight_j > temp ){ \\if( weight_j != m_infty ){ \\vertex.erase( pair<U,int>( weight_j , j ) ); \\} \\SET_PREV; \changed_vertex.push_back( pair<U,int>( weight_j = temp , j ) ); \\} \\} \\} \\for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \\vertex.insert( *itr_changed ); \\} \\} \\} \// メモリが不足する場合はEの定義を前計算しないでその都度計算させること。template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>class DijkstraBody{private:int m_size;U m_infty;U m_found;public:inline DijkstraBody( const int& size , const U& infty , const U& found );// 経路が存在しない場合の返り値はm_inftyU Solve( const T& t_start , const T& t_final );U Solve( const T& t_start , const T& t_final , list<T>& path );void Solve( const T& t_start , vector<U>& weight );void Solve( const T& t_start , vector<U>& weight , list<T> ( &path )[size_max] );const U& Infty() const;private:virtual const U& Unit() const = 0;virtual U Addition( const U& , const U& ) const = 0;virtual T e( const int& i ) = 0;virtual int e_inv( const T& t ) = 0;virtual void Reset() = 0;};// 入力の範囲内で要件// (1) Eの値の各成分の第2成分が0以上である。// (2) 2^{31}-1がEの値の各成分の第2成分size_max個以下の和で表せるいかなる数よりも大きい。// (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。// が成り立つ場合にのみサポート。// 単一始点単一終点最短経路探索/経路復元なしO((size+|E|)log size)// 単一始点単一終点最短経路探索/経路復元ありO((size+|E|)log size)// 単一始点全点最短経路探索/経路復元なしO((size+|E|)log size)// 単一始点全点最短経路探索/経路復元ありO(size^2 + |E| log size)template <list<pair<int,ll> > E(const int&) , int size_max>class Dijkstra :public DijkstraBody<int,ll,E,size_max>{public:inline Dijkstra( const int& size );private:inline const ll& Unit() const;inline ll Addition( const ll& , const ll& ) const;inline int e( const int& i );inline int e_inv( const int& t );inline void Reset();};// 入力の範囲内で要件// (1) Eの値の各成分の第2成分がe_T()以上である。// (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。// (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。// (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して全順序モノイドである。// (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。// が成り立つ場合にのみサポート。// 単一始点単一終点最短経路探索/経路復元なしO((size+|E|)(log size)^2)// 単一始点単一終点最短経路探索/経路復元ありO((size+|E|)(log size)^2)// 単一始点全点最短経路探索/経路復元なしO((size+|E|)(log size)^2)// 単一始点全点最短経路探索/経路復元ありO(size^2 log size + |E|(log size)^2)template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max>class MemorisationDijkstra :public DijkstraBody<T,U,E,size_max>{private:int m_length;map<T,int> m_memory;vector<T> m_memory_inv;public:inline MemorisationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );private:inline const U& Unit() const;inline U Addition( const U& , const U& ) const;inline T e( const int& i );inline int e_inv( const T& t );inline void Reset();};// 入力の範囲内で要件// (1) Eの値の各成分の第2成分がe_T()以上である。// (2) inftyがEの値の各成分の第2成分size_max個以下の和で表せるいかなる項よりも大きい。// (3) foundがEの値の各成分の第2成分size_max個以下の和で表せず、inftyとも異なる。// (4) (U,m_U:U^2->U,e_U:1->U)がbool operator<(const U&,const U&)に関して全順序モノイドである。// (5) (enum_T,enum_T_inv)が互いに逆写像である。// (6) Vの各要素u,vに対し、辺u->vが複数存在する場合は重みが最小のものが前にpushされている。// が成り立つ場合にのみサポート。// 単一始点単一終点最短経路探索/経路復元なしO((size+|E|)log size)// 単一始点単一終点最短経路探索/経路復元ありO((size+|E|)log size)// 単一始点全点最短経路探索/経路復元なしO((size+|E|)log size)// 単一始点全点最短経路探索/経路復元ありO(size^2 + |E| log size)template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)>class EnumerationDijkstra :public DijkstraBody<T,U,E,size_max>{public:inline EnumerationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );private:inline const U& Unit() const;inline U Addition( const U& , const U& ) const;inline T e( const int& i );inline int e_inv( const T& t );inline void Reset();};template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> inline DijkstraBody<T,U,E,size_max>::DijkstraBody( const int& size ,const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) { static_assert( ! is_same<U,int>::value ); }template <list<pair<int,ll> > E(const int&) , int size_max> inline Dijkstra<E,size_max>::Dijkstra( const int& size ) : DijkstraBody<int,ll,E,size_max>( size , 9223372036854775807 , -1 ) {}template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inlineMemorisationDijkstra<T,U,m_U,e_U,E,size_max>::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) , m_length() , m_memory() , m_memory_inv() {}template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::EnumerationDijkstra( const int& size , const U&infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) {}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final ){const int i_final = e_inv( t_final ); \DIJKSTRA_BODY( , vector<U> weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , , );Reset();return weight[i_final];}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final , list<T>& path ){const int i_final = e_inv( t_final ); \DIJKSTRA_BODY( , vector<U> weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , vector<int> prev( m_size ) , prev[j] = i );int i = i_final;while( i != i_start ){path.push_front( e( i ) );i = prev[i];}path.push_front( t_start );Reset();return weight[i_final];}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>void DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , vector<U>& weight ){constexpr const int i_final = -1;DIJKSTRA_BODY( vector<bool> found( m_size ) , weight = vector<U>( m_size , m_infty ) , found[i] = true , !found[j] , , );Reset();return;}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>void DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , vector<U>& weight , list<T> ( &path )[size_max] ){constexpr const int i_final = -1;DIJKSTRA_BODY( vector<bool> found( m_size ) , weight = vector<U>( m_size , m_infty ) , found[i] = true , !found[j] , vector<int> prev( m_size ) ,prev[j] = i );for( int j = 0 ; j < m_size ; j++ ){list<T>& path_j = path[j];int i = j;while( i != i_start ){path_j.push_front( e( i ) );i = prev[i];}path_j.push_front( t_start );}Reset();return;}template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> const U& DijkstraBody<T,U,E,size_max>::Infty() const { returnm_infty; }template <list<pair<int,ll> > E(const int&) , int size_max> inline const ll& Dijkstra<E,size_max>::Unit() const { static const ll unit = 0; returnunit; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline const U&MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Unit() const { return e_U(); }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline const U& EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Unit() const { return e_U(); }template <list<pair<int,ll> > E(const int&) , int size_max> inline ll Dijkstra<E,size_max>::Addition( const ll& u0 , const ll& u1 ) const { return u0+ u1; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline UMemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline U EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Addition( const U& u0 , const U& u1 ) const {return m_U( u0 , u1 ); }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline TMemorisationDijkstra<T,U,m_U,e_U,E,size_max>::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; }template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e( const int& i ) { return i; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline T EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e( const int& i ) { return enum_T( i ); }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline intMemorisationDijkstra<T,U,m_U,e_U,E,size_max>::e_inv( const T& t ){using base = DijkstraBody<T,U,E,size_max>;if( m_memory.count( t ) == 0 ){assert( m_length < base::m_size );m_memory_inv.push_back( t );return m_memory[t] = m_length++;}return m_memory[t];}template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e_inv( const int& t ) { return t; }template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline int EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e_inv( const T& t ) { return enum_T_inv( t );}template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline voidMemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Reset() { m_length = 0; m_memory.clear(); m_memory_inv.clear(); }template <list<pair<int,ll> > E(const int&) , int size_max> inline void Dijkstra<E,size_max>::Reset() {}template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,int enum_T_inv(const T&)> inline void EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Reset() {}// nの素因数分解:SetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT& n,VE<INT>& P,VE<INT>& EX)TE <TY INT,INT val_limit,int LE_max = val_limit>CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration();CE CO INT& OP[](CRI n) CO;CE CO INT& Get(CRI n) CO;CE CO bool& IsComposite(CRI i) CO;CE CRI LE() CO NE;};TE <TY INT,INT val_limit,int LE_max>CE PrimeEnumeration<INT,val_limit,LE_max>::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i <val_limit;i++){if(! m_is_composite[i]){INT j = i;WH((j += i)< val_limit){m_is_composite[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break;}}}}TE <TY INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::OP[](CRI n)CO{assert(n < m_LE);RE m_val[n];}TE <TYINT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::Get(CRI n)CO{RE OP[](n);}TE <TY INT,INT val_limit,int LE_max> CECO bool& PrimeEnumeration<INT,val_limit,LE_max>::IsComposite(CRI i)CO{assert(i < val_limit);RE m_is_composite[i];}TE <TY INT,INT val_limit,intLE_max> CE CRI PrimeEnumeration<INT,val_limit,LE_max>::LE()CO NE{RE m_LE;}TE <TY INT,INT val_limit,int LE_max,TY INT1,TY INT2,TY INT3>VO SetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT1& n,VE<INT2>& P,VE<INT3>& EX){INT1 n_copy = n;int i = 0;WH(i < prime.m_LE){CO INT2& p = prime[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P.push_back(p);EX.push_back(1);INT3& EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back(n_copy);EX.push_back(1);}RE;}// AAA ライブラリは以上に挿入する。// VVV テンプレート引数用の関数は以下に挿入する。vector<vector<int> > Exponent;int current_num;// H,W,e<PATH>は宣言済み。template <typename PATH> list<PATH> E( const int& i ){list<PATH> answer{};// list<PATH> answer = e<PATH>[i];// VVV 入力によらない処理は以下に挿入する。auto& ei = e<int>[i];FOR_ITR( ei ){answer.push_back( { *itr , max( Exponent[i][current_num] , Exponent[*itr][current_num] ) } );}// AAA 入力によらない処理は以上に挿入する。return answer;}// AAA テンプレート引数用の関数は以上に挿入する。ll Naive( int N , int M , int K ){ll answer = N + M + K;return answer;}ll Answer( ll N , ll M , ll K ){// START_WATCH;ll answer = N + M + K;// // TLに準じる乱択や全探索。デフォルトの猶予は100.0[ms]。// CEXPR( double , TL , 2000.0 );// while( CHECK_WATCH( TL ) ){// }return answer;}inline void Solve(){// // 大きな素数CEXPR( ll , P , 998244353 );// // CEXPR( ll , P , 1000000007 ); // Mod<P>を使う時はP2に変更。// // データ構造使用畤のNの上限// DEXPR( int , bound_N , 100000 , 100 ); // 0が5個// // DEXPR( int , bound_N , 1000000000 , 100 ); // 0が9個// // DEXPR( ll , bound_N , 1000000000000000000 , 100 ); // 0が18個// // データ構造使用畤のMの上限// // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );// DEXPR( int , bound_M , 100000 , 100 ); // 0が5個// // DEXPR( int , bound_M , 1000000000 , 100 ); // 0が9個// // DEXPR( ll , bound_M , 1000000000000000000 , 100 ); // 0が18個// // 数CIN( ll , N );CIN( ll , M );// CIN( ll , N , M , K );// // CIN_ASSERT( N , 1 , bound_N ); // ランダムテスト用。上限のデフォルト値は10^5。// // CIN_ASSERT( M , 1 , bound_M ); // ランダムテスト用。上限のデフォルト値は10^5。// // 文字列// CIN( string , S );// CIN( string , T );// // 配列CIN_A( ll , A , N );// // CIN_A( ll , B , N );// // ll A[N];// // ll B[N];// // ll A[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。// // ll B[bound_N]; // 関数(コンストラクタ)の引数に使う。長さのデフォルト値は10^5。// // FOR( i , 0 , N ){// // cin >> A[i] >> B[i];// // }constexpr PrimeEnumeration<ll,3163> pe{};map<int,int> prime_set{};vector<int> Prime[N];Exponent.resize( N );FOR( i , 0 , N ){auto& Prime_i = Prime[i];SetPrimeFactorisation( pe , A[i] , Prime_i , Exponent[i] );FOR_ITR( Prime_i ){prime_set[*itr];}}int prime_size = 0;FOR_ITR( prime_set ){itr->second = prime_size++;}FOR( i , 0 , N ){vector<int> temp( prime_size );int prime_i_size = Prime[i].size();FOR( j , 0 , prime_i_size ){temp[prime_set[Prime[i][j]]] = Exponent[i][j];}Prime[i].resize( prime_size );Exponent[i] = temp;}// // 順列// int P[N];// int P_inv[N];// FOR( i , 0 , N ){// cin >> P[i];// P_inv[--P[i]] = i;// }// グラフe<int>.resize( N );// e<path>.resize( N );FOR( j , 0 , M ){CIN_ASSERT( uj , 1 , N );CIN_ASSERT( vj , 1 , N );uj--;vj--;e<int>[uj].push_back( vj );e<int>[vj].push_back( uj );// // CIN( ll , wj );// // e<path>[uj].push_back( { vj , wj } );// // e<path>[vj].push_back( { uj , wj } );}current_num = 0;FOR_ITR( prime_set ){EnumerationDijkstra<int,ll,Max<ll>,Zero<ll>,E<path>,250,Id<int>,Id<int> > d{ int( N ) };vector<ll> answer{};d.Solve( 0 , answer );FOR( i , 1 , N ){Prime[i][current_num] = answer[i];}current_num++;}COUT( A[0] );FOR( i , 1 , N ){ll answer = 1;FOR_ITR( prime_set ){POWER_MOD( power , itr->first , Prime[i][itr->second] , P );( answer *= power ) %= P;}COUT( answer );}// // 座標圧縮や単一クエリタイプなどのための入力格納// T3<ll> data[M];// FOR( j , 0 , M ){// CIN( ll , x , y , z );// data[j] = { x , y , z };// }// // 一般のクエリ// CIN( int , Q );// // DEXPR( int , bound_Q , 100000 , 100 ); // 基本不要。// // CIN_ASSERT( Q , 1 , bound_Q ); // 基本不要。// // T3<int> query[Q];// // T2<int> query[Q];// FOR( q , 0 , Q ){// CIN( int , type );// if( type == 1 ){// CIN( int , x , y );// // query[q] = { type , x , y };// } else if( type == 2 ){// CIN( int , x , y );// // query[q] = { type , x , y };// } else {// CIN( int , x , y );// // query[q] = { type , x , y };// }// // CIN( int , x , y );// // // query[q] = { x , y };// }// // sort( query , query + Q );// // FOR( q , 0 , Q ){// // auto& [x,y] = query[q];// // // auto& [type,x,y] = query[q];// // }// // データ構造や壁配列使用畤のH,Wの上限// DEXPR( int , bound_H , 2000 , 30 );// // DEXPR( int , bound_H , 100000 , 10 ); // 0が5個// // CEXPR( int , bound_H , 1000000000 ); // 0が9個// CEXPR( int , bound_W , bound_H );// static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );// CEXPR( int , bound_HW , bound_H * bound_W );// // CEXPR( int , bound_HW , 100000 ); // 0が5個// // CEXPR( int , bound_HW , 1000000 ); // 0が6個// // グリッド// cin >> H >> W;// // SET_ASSERT( H , 1 , bound_H ); // ランダムテスト用。上限のデフォルト値は2*10^3。// // SET_ASSERT( W , 1 , bound_W ); // ランダムテスト用。上限のデフォルト値は2*10^3。// H_minus = H - 1;// W_minus = W - 1;// HW = H * W;// // assert( HW <= bound_HW ); // 基本不要。上限のデフォルト値は4*10^6。// string S[H];// FOR( i , 0 , H ){// cin >> S[i];// // SetEdgeOnGrid( S[i] , i , e<int> );// // SetWallOnGrid( S[i] , i , non_wall );// }// // {h,w}へデコード: EnumHW( v )// // {h,w}をコード: EnumHW_inv( h , w );// // (i,j)->(k,h)の方向番号を取得: DirectionNumberOnGrid( i , j , k , h );// // v->wの方向番号を取得: DirectionNumberOnGrid( v , w );// // 方向番号の反転U<->D、R<->L: ReverseDirectionNumberOnGrid( n );// auto answer = Answer( N , M , K );// RETURN( answer );// // COUT( answer );// // COUT_A( A , N );}inline void Experiment(){// CEXPR( int , bound , 10 );// FOREQ( N , 0 , bound ){// FOREQ( M , 0 , bound ){// FOREQ( K , 0 , bound ){// COUT( N , M , K , ":" , Naive( N , M , K ) );// }// }// // cout << Naive( N ) << ",\n"[N==bound];// }}inline void SmallTest(){// CEXPR( int , bound , 10 );// FOREQ( N , 0 , bound ){// FOREQ( M , 0 , bound ){// FOREQ( K , 0 , bound ){// COMPARE( N , M , K );// }// }// // COMPARE( N );// }}REPEAT_MAIN(1);