結果

問題 No.2497 GCD of LCMs
ユーザー 👑 p-adic
提出日時 2023-10-08 21:12:07
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 233 ms / 2,000 ms
コード長 40,670 bytes
コンパイル時間 14,306 ms
コンパイル使用メモリ 321,540 KB
最終ジャッジ日時 2025-02-17 06:20:32
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 14
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define REPEAT_MAIN( BOUND ) START_MAIN; signal( SIGABRT , &AlertAbort ); AutoCheck( exec_mode ); if( exec_mode == debug_mode || exec_mode ==
      library_search_mode ){ return 0; } else if( exec_mode == experiment_mode ){ Experiment(); return 0; } else if( exec_mode == small_test_mode ){
      SmallTest(); return 0; }; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if( exec_mode == solve_mode
      ){ if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } } else if( exec_mode == random_test_mode
      ){ CERR( "" ); cin >> test_case_num; } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define ASSERT( A , MIN , MAX ) CERR( "ASSERT " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )
      ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) if( exec_mode == solve_mode ){ cin >> A; ASSERT( A , MIN , MAX ); } else if( exec_mode == random_test_mode ){
      CERR( #A , " = " , ( A = GetRand( MIN , MAX ) ) ); } else { assert( false ); }
#define SOLVE_ONLY static_assert( __FUNCTION__[0] == 'S' )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << " " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << " "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << " "; OUTPUT_ITR( cout , A ) << endl
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , bound_test_case_num , BOUND ); int test_case_num = 1; if constexpr( bound_test_case_num > 1
      ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } FINISH_MAIN
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define SOLVE_ONLY
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
template <typename INT> using T2 = pair<INT,INT>;
template <typename INT> using T3 = tuple<INT,INT,INT>;
template <typename INT> using T4 = tuple<INT,INT,INT,INT>;
using path = pair<int,ll>;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define FINISH_MAIN REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" );
    } Solve(); CERR( "" ); } }
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()
#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , ... ) SOLVE_ONLY; LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define SET_A( A , N ) SOLVE_ONLY; FOR( VARIABLE_FOR_CIN_A , 0 , N ){ cin >> A[VARIABLE_FOR_CIN_A]; }
#define CIN_A( LL , A , N ) LL A[N]; SET_A( A , N );
#define GETLINE_SEPARATE( SEPARATOR , ... ) SOLVE_ONLY; string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
#define GETLINE( ... ) SOLVE_ONLY; GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?""
    :" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR =
    ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR =
    ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
#define RETURN( ... ) SOLVE_ONLY; COUT( __VA_ARGS__ ); return
#define COMPARE( ... ) auto naive = Naive( __VA_ARGS__ ); auto answer = Answer( __VA_ARGS__ ); bool match = naive == answer; COUT( #__VA_ARGS__ , ":"
    , naive , match ? "==" : "!=" , answer ); if( !match ){ return; }
//
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,
    ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const
    char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os
    << arg; }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits
    >& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }
//
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }
#define POWER( ANSWER , ARGUMENT , EXPONENT ) \
static_assert( ! is_same<TYPE_OF( ARGUMENT ),int>::value && ! is_same<TYPE_OF( ARGUMENT ),uint>::value ); \
TYPE_OF( ARGUMENT ) ANSWER{ 1 }; \
{ \
TYPE_OF( ARGUMENT ) ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER *= ARGUMENT_FOR_SQUARE_FOR_POWER; \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define POWER_MOD( ANSWER , ARGUMENT , EXPONENT , MODULO ) \
ll ANSWER{ 1 }; \
{ \
ll ARGUMENT_FOR_SQUARE_FOR_POWER = ( ( MODULO ) + ( ( ARGUMENT ) % ( MODULO ) ) ) % ( MODULO ); \
TYPE_OF( EXPONENT ) EXPONENT_FOR_SQUARE_FOR_POWER = ( EXPONENT ); \
while( EXPONENT_FOR_SQUARE_FOR_POWER != 0 ){ \
if( EXPONENT_FOR_SQUARE_FOR_POWER % 2 == 1 ){ \
ANSWER = ( ANSWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
} \
ARGUMENT_FOR_SQUARE_FOR_POWER = ( ARGUMENT_FOR_SQUARE_FOR_POWER * ARGUMENT_FOR_SQUARE_FOR_POWER ) % ( MODULO ); \
EXPONENT_FOR_SQUARE_FOR_POWER /= 2; \
} \
} \
#define FACTORIAL_MOD( ANSWER , ANSWER_INV , INVERSE , MAX_INDEX , CONSTEXPR_LENGTH , MODULO ) \
static ll ANSWER[CONSTEXPR_LENGTH]; \
static ll ANSWER_INV[CONSTEXPR_LENGTH]; \
static ll INVERSE[CONSTEXPR_LENGTH]; \
{ \
ll VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
ANSWER[0] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL; \
FOREQ( i , 1 , MAX_INDEX ){ \
ANSWER[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= i ) %= ( MODULO ); \
} \
ANSWER_INV[0] = ANSWER_INV[1] = INVERSE[1] = VARIABLE_FOR_PRODUCT_FOR_FACTORIAL = 1; \
FOREQ( i , 2 , MAX_INDEX ){ \
ANSWER_INV[i] = ( VARIABLE_FOR_PRODUCT_FOR_FACTORIAL *= INVERSE[i] = ( MODULO ) - ( ( ( ( MODULO ) / i ) * INVERSE[ ( MODULO ) % i ] ) % (
          MODULO ) ) ) %= ( MODULO ); \
} \
} \
//
// EXPRESSIONANSWER調EXPRESSION >= TARGET
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
if( MINIMUM <= MAXIMUM ){ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( "" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , "-" , TARGET , "
          =" , VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
CERR( "" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , ( EXPRESSION >
        TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) , TARGET ); \
if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \
CERR( "" ); \
} else { \
CERR( "" ); \
ANSWER = MAXIMUM + 1; \
} \
} else { \
CERR( " " , MINIMUM , ">" , MAXIMUM ); \
ANSWER = MAXIMUM + 1; \
} \
// 調EXPRESSION >= TARGET
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION >= TARGET
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 調EXPRESSION <= TARGET
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L +
      VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLeq( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end;
    } auto itr = S.upper_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MaximumLt( set<T>& S , const T& t ) { const auto end = S.end(); if( S.empty() ){ return end; }
    auto itr = S.lower_bound( t ); return itr == end ? S.find( *( S.rbegin() ) ) : itr == S.begin() ? end : --itr; }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGeq( set<T>& S , const T& t ) { return S.lower_bound( t ); }
// titeratorend()
template <typename T> inline typename set<T>::iterator MinimumGt( set<T>& S , const T& t ) { return S.upper_bound( t ); }
//
template <typename T> inline T Add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline T XorAdd( const T& t0 , const T& t1 ){ return t0 ^ t1; }
template <typename T> inline T Multiply( const T& t0 , const T& t1 ) { return t0 * t1; }
template <typename T> inline const T& Zero() { static const T z = 0; return z; }
template <typename T> inline const T& One() { static const T o = 1; return o; }\
template <typename T> inline T AddInv( const T& t ) { return -t; }
template <typename T> inline T Id( const T& v ) { return v; }
template <typename T> inline T Min( const T& a , const T& b ){ return a < b ? a : b; }
template <typename T> inline T Max( const T& a , const T& b ){ return a < b ? b : a; }
//
int H , W , H_minus , W_minus , HW;
vector<vector<bool> > non_wall;
inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
const string direction[4] = {"U","R","D","L"};
// (i,j)->(k,h)
inline int DirectionNumberOnGrid( const int& i , const int& j , const int& k , const int& h ){return i<k?2:i>k?0:j<h?1:j>h?3:(assert(false),-1);}
// v->w
inline int DirectionNumberOnGrid( const int& v , const int& w ){auto [i,j]=EnumHW(v);auto [k,h]=EnumHW(w);return DirectionNumberOnGrid(i,j,k,h);}
// U<->DR<->L
inline int ReverseDirectionNumberOnGrid( const int& n ){assert(0<=n&&n<4);return(n+2)%4;}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<int> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){int v =
    EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back(v);}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back(v);}if(j>0){e[EnumHW_inv(i,j-1)].push_back(v
    );}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back(v);}}}}
inline void SetEdgeOnGrid( const string& Si , const int& i , list<path> ( &e )[] , const char& walkable = '.' ){FOR(j,0,W){if(Si[j]==walkable){const
    int v=EnumHW_inv(i,j);if(i>0){e[EnumHW_inv(i-1,j)].push_back({v,1});}if(i+1<H){e[EnumHW_inv(i+1,j)].push_back({v,1});}if(j>0){e[EnumHW_inv(i,j-1
    )].push_back({v,1});}if(j+1<W){e[EnumHW_inv(i,j+1)].push_back({v,1});}}}}
inline void SetWallOnGrid( const string& Si , const int& i , vector<vector<bool> >& non_wall , const char& walkable = '.' , const char& unwalkable =
    '#' ){non_wall.push_back(vector<bool>(W));auto& non_wall_i=non_wall[i];FOR(j,0,W){non_wall_i[j]=Si[j]==walkable?true:(assert(Si[j]==unwalkable
    ),false);}}
//
template <typename PATH> list<PATH> E( const int& i );
template <typename PATH> vector<list<PATH> > e;
//
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR(
      "abortassert" ); }
void AutoCheck( int& exec_mode );
inline void Solve();
inline void Experiment();
inline void SmallTest();
inline void RandomTest();
ll GetRand( const ll& Rand_min , const ll& Rand_max );
int exec_mode;
CEXPR( int , solve_mode , 0 );
CEXPR( int , debug_mode , 1 );
CEXPR( int , library_search_mode , 2 );
CEXPR( int , experiment_mode , 3 );
CEXPR( int , small_test_mode , 4 );
CEXPR( int , random_test_mode , 5 );
#endif
//
#define TE template
#define TY typename
#define US using
#define ST static
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
/*
C-x 3 C-x o C-x C-f
BIT:
c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/BIT/compress.txt
BFS:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/BreadthFirstSearch/compress.txt
DFS on Tree:
c:/Users/user/Documents/Programming/Mathematics/Geometry/Graph/DepththFirstSearch/Tree/compress.txt
Divisor:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Prime/Divisor/compress.txt
Mod:
c:/Users/user/Documents/Programming/Mathematics/Arithmetic/Mod/ConstexprModulo/compress.txt
Polynomial
c:/Users/user/Documents/Programming/Mathematics/Polynomial/compress.txt
*/
// VVV
#define DIJKSTRA_BODY( SET_FOUND , SET_WEIGHT , UPDATE_FOUND , CHECK_FOUND , INITIALISE_PREV , SET_PREV ) \
static const U& unit = Unit(); \
assert( unit != m_found && unit < m_infty ); \
const int i_start = e_inv( t_start ); \
set<pair<U,int> > vertex{}; \
SET_FOUND; \
SET_WEIGHT; \
vertex.insert( pair<U,int>( weight[i_start] = unit , i_start ) ); \
INITIALISE_PREV; \
\
if( i_start != i_final ){ \
\
while( ! vertex.empty() ){ \
\
auto itr_vertex = vertex.begin(); \
const pair<U,int> v = *itr_vertex; \
const int& i = v.second; \
const U& u = v.first; \
UPDATE_FOUND; \
vertex.erase( itr_vertex ); \
const list<pair<T,U> > edge_i = E( e( i ) ); \
list<pair<U,int> > changed_vertex{}; \
\
for( auto itr_edge_i = edge_i.begin() , end_edge_i = edge_i.end() ; itr_edge_i != end_edge_i ; itr_edge_i++ ){ \
\
const int& j = e_inv( itr_edge_i->first ); \
U& weight_j = weight[j]; \
\
if( CHECK_FOUND ){ \
\
const U& edge_ij = itr_edge_i->second; \
const U temp = Addition( u , edge_ij ); \
assert( edge_ij != m_found && temp != m_found && !( temp < edge_ij ) && temp < m_infty ); \
\
if( weight_j > temp ){ \
\
if( weight_j != m_infty ){ \
\
vertex.erase( pair<U,int>( weight_j , j ) ); \
\
} \
\
SET_PREV; \
changed_vertex.push_back( pair<U,int>( weight_j = temp , j ) ); \
\
} \
\
} \
\
} \
\
for( auto itr_changed = changed_vertex.begin() , end_changed = changed_vertex.end() ; itr_changed != end_changed ; itr_changed++ ){ \
\
vertex.insert( *itr_changed ); \
\
} \
\
} \
\
} \
// E
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
class DijkstraBody
{
private:
int m_size;
U m_infty;
U m_found;
public:
inline DijkstraBody( const int& size , const U& infty , const U& found );
// m_infty
U Solve( const T& t_start , const T& t_final );
U Solve( const T& t_start , const T& t_final , list<T>& path );
void Solve( const T& t_start , vector<U>& weight );
void Solve( const T& t_start , vector<U>& weight , list<T> ( &path )[size_max] );
const U& Infty() const;
private:
virtual const U& Unit() const = 0;
virtual U Addition( const U& , const U& ) const = 0;
virtual T e( const int& i ) = 0;
virtual int e_inv( const T& t ) = 0;
virtual void Reset() = 0;
};
//
// (1) E20
// (2) 2^{31}-1E2size_max
// (6) Vu,vu->vpush
//
// O((size+|E|)log size)
// O((size+|E|)log size)
// O((size+|E|)log size)
// O(size^2 + |E| log size)
template <list<pair<int,ll> > E(const int&) , int size_max>
class Dijkstra :
public DijkstraBody<int,ll,E,size_max>
{
public:
inline Dijkstra( const int& size );
private:
inline const ll& Unit() const;
inline ll Addition( const ll& , const ll& ) const;
inline int e( const int& i );
inline int e_inv( const int& t );
inline void Reset();
};
//
// (1) E2e_T()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
// (6) Vu,vu->vpush
//
// O((size+|E|)(log size)^2)
// O((size+|E|)(log size)^2)
// O((size+|E|)(log size)^2)
// O(size^2 log size + |E|(log size)^2)
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max>
class MemorisationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
private:
int m_length;
map<T,int> m_memory;
vector<T> m_memory_inv;
public:
inline MemorisationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
inline T e( const int& i );
inline int e_inv( const T& t );
inline void Reset();
};
//
// (1) E2e_T()
// (2) inftyE2size_max
// (3) foundE2size_maxinfty
// (4) (U,m_U:U^2->U,e_U:1->U)bool operator<(const U&,const U&)
// (5) (enum_T,enum_T_inv)
// (6) Vu,vu->vpush
//
// O((size+|E|)log size)
// O((size+|E|)log size)
// O((size+|E|)log size)
// O(size^2 + |E| log size)
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)>
class EnumerationDijkstra :
public DijkstraBody<T,U,E,size_max>
{
public:
inline EnumerationDijkstra( const int& size , const U& infty = 9223372036854775807 , const U& found = -1 );
private:
inline const U& Unit() const;
inline U Addition( const U& , const U& ) const;
inline T e( const int& i );
inline int e_inv( const T& t );
inline void Reset();
};
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> inline DijkstraBody<T,U,E,size_max>::DijkstraBody( const int& size ,
    const U& infty , const U& found ) : m_size( size ) , m_infty( infty ) , m_found( found ) { static_assert( ! is_same<U,int>::value ); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline Dijkstra<E,size_max>::Dijkstra( const int& size ) : DijkstraBody<int,ll,E,size_max
    >( size , 9223372036854775807 , -1 ) {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::MemorisationDijkstra( const int& size , const U& infty , const U& found ) : DijkstraBody<T,U,E
    ,size_max>( size , infty , found ) , m_length() , m_memory() , m_memory_inv() {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::EnumerationDijkstra( const int& size , const U&
    infty , const U& found ) : DijkstraBody<T,U,E,size_max>( size , infty , found ) {}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final )
{
const int i_final = e_inv( t_final ); \
DIJKSTRA_BODY( , vector<U> weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , , );
Reset();
return weight[i_final];
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
U DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , const T& t_final , list<T>& path )
{
const int i_final = e_inv( t_final ); \
DIJKSTRA_BODY( , vector<U> weight( m_size , m_infty ) , weight[i] = m_found , weight_j != m_found , vector<int> prev( m_size ) , prev[j] = i );
int i = i_final;
while( i != i_start ){
path.push_front( e( i ) );
i = prev[i];
}
path.push_front( t_start );
Reset();
return weight[i_final];
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
void DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , vector<U>& weight )
{
constexpr const int i_final = -1;
DIJKSTRA_BODY( vector<bool> found( m_size ) , weight = vector<U>( m_size , m_infty ) , found[i] = true , !found[j] , , );
Reset();
return;
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max>
void DijkstraBody<T,U,E,size_max>::Solve( const T& t_start , vector<U>& weight , list<T> ( &path )[size_max] )
{
constexpr const int i_final = -1;
DIJKSTRA_BODY( vector<bool> found( m_size ) , weight = vector<U>( m_size , m_infty ) , found[i] = true , !found[j] , vector<int> prev( m_size ) ,
      prev[j] = i );
for( int j = 0 ; j < m_size ; j++ ){
list<T>& path_j = path[j];
int i = j;
while( i != i_start ){
path_j.push_front( e( i ) );
i = prev[i];
}
path_j.push_front( t_start );
}
Reset();
return;
}
template <typename T , typename U , list<pair<T,U> > E(const T&) , int size_max> const U& DijkstraBody<T,U,E,size_max>::Infty() const { return
    m_infty; }
template <list<pair<int,ll> > E(const int&) , int size_max> inline const ll& Dijkstra<E,size_max>::Unit() const { static const ll unit = 0; return
    unit; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline const U&
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Unit() const { return e_U(); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline const U& EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Unit() const { return e_U(); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline ll Dijkstra<E,size_max>::Addition( const ll& u0 , const ll& u1 ) const { return u0
    + u1; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline U
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Addition( const U& u0 , const U& u1 ) const { return m_U( u0 , u1 ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline U EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Addition( const U& u0 , const U& u1 ) const {
    return m_U( u0 , u1 ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline T
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::e( const int& i ) { assert( i < m_length ); return m_memory_inv[i]; }
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e( const int& i ) { return i; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline T EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e( const int& i ) { return enum_T( i ); }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline int
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::e_inv( const T& t )
{
using base = DijkstraBody<T,U,E,size_max>;
if( m_memory.count( t ) == 0 ){
assert( m_length < base::m_size );
m_memory_inv.push_back( t );
return m_memory[t] = m_length++;
}
return m_memory[t];
}
template <list<pair<int,ll> > E(const int&) , int size_max> inline int Dijkstra<E,size_max>::e_inv( const int& t ) { return t; }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline int EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::e_inv( const T& t ) { return enum_T_inv( t );
    }
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max> inline void
    MemorisationDijkstra<T,U,m_U,e_U,E,size_max>::Reset() { m_length = 0; m_memory.clear(); m_memory_inv.clear(); }
template <list<pair<int,ll> > E(const int&) , int size_max> inline void Dijkstra<E,size_max>::Reset() {}
template <typename T , typename U , U m_U(const U&,const U&) , const U& e_U() , list<pair<T,U> > E(const T&) , int size_max , T enum_T(const int&) ,
    int enum_T_inv(const T&)> inline void EnumerationDijkstra<T,U,m_U,e_U,E,size_max,enum_T,enum_T_inv>::Reset() {}
// nSetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT& n,VE<INT>& P,VE<INT>& EX)
TE <TY INT,INT val_limit,int LE_max = val_limit>CL PrimeEnumeration{PU:bool m_is_composite[val_limit];INT m_val[LE_max];int m_LE;CE PrimeEnumeration
    ();CE CO INT& OP[](CRI n) CO;CE CO INT& Get(CRI n) CO;CE CO bool& IsComposite(CRI i) CO;CE CRI LE() CO NE;};
TE <TY INT,INT val_limit,int LE_max>CE PrimeEnumeration<INT,val_limit,LE_max>::PrimeEnumeration():m_is_composite(),m_val(),m_LE(0){for(INT i = 2;i <
    val_limit;i++){if(! m_is_composite[i]){INT j = i;WH((j += i)< val_limit){m_is_composite[j] = true;}m_val[m_LE++] = i;if(m_LE >= LE_max){break
    ;}}}}TE <TY INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::OP[](CRI n)CO{assert(n < m_LE);RE m_val[n];}TE <TY
    INT,INT val_limit,int LE_max> CE CO INT& PrimeEnumeration<INT,val_limit,LE_max>::Get(CRI n)CO{RE OP[](n);}TE <TY INT,INT val_limit,int LE_max> CE
    CO bool& PrimeEnumeration<INT,val_limit,LE_max>::IsComposite(CRI i)CO{assert(i < val_limit);RE m_is_composite[i];}TE <TY INT,INT val_limit,int
    LE_max> CE CRI PrimeEnumeration<INT,val_limit,LE_max>::LE()CO NE{RE m_LE;}
TE <TY INT,INT val_limit,int LE_max,TY INT1,TY INT2,TY INT3>VO SetPrimeFactorisation(CO PrimeEnumeration<INT,val_limit,LE_max>& prime,CO INT1& n,VE
    <INT2>& P,VE<INT3>& EX){INT1 n_copy = n;int i = 0;WH(i < prime.m_LE){CO INT2& p = prime[i];if(p * p > n_copy){break;}if(n_copy % p == 0){P
    .push_back(p);EX.push_back(1);INT3& EX_back = EX.back();n_copy /= p;WH(n_copy % p == 0){EX_back++;n_copy /= p;}}i++;}if(n_copy != 1){P.push_back
    (n_copy);EX.push_back(1);}RE;}
// AAA
// VVV
vector<vector<int> > Exponent;
int current_num;
// H,W,e<PATH>
template <typename PATH> list<PATH> E( const int& i )
{
list<PATH> answer{};
// list<PATH> answer = e<PATH>[i];
// VVV
auto& ei = e<int>[i];
FOR_ITR( ei ){
answer.push_back( { *itr , max( Exponent[i][current_num] , Exponent[*itr][current_num] ) } );
}
// AAA
return answer;
}
// AAA
ll Naive( int N , int M , int K )
{
ll answer = N + M + K;
return answer;
}
ll Answer( ll N , ll M , ll K )
{
// START_WATCH;
ll answer = N + M + K;
// // TL100.0[ms]
// CEXPR( double , TL , 2000.0 );
// while( CHECK_WATCH( TL ) ){
// }
return answer;
}
inline void Solve()
{
// //
CEXPR( ll , P , 998244353 );
// // CEXPR( ll , P , 1000000007 ); // Mod<P>使P2
// // 使N
// DEXPR( int , bound_N , 100000 , 100 ); // 05
// // DEXPR( int , bound_N , 1000000000 , 100 ); // 09
// // DEXPR( ll , bound_N , 1000000000000000000 , 100 ); // 018
// // 使M
// // CEXPR( TYPE_OF( bound_N ) , bound_M , bound_N );
// DEXPR( int , bound_M , 100000 , 100 ); // 05
// // DEXPR( int , bound_M , 1000000000 , 100 ); // 09
// // DEXPR( ll , bound_M , 1000000000000000000 , 100 ); // 018
// //
CIN( ll , N );
CIN( ll , M );
// CIN( ll , N , M , K );
// // CIN_ASSERT( N , 1 , bound_N ); // 10^5
// // CIN_ASSERT( M , 1 , bound_M ); // 10^5
// //
// CIN( string , S );
// CIN( string , T );
// //
CIN_A( ll , A , N );
// // CIN_A( ll , B , N );
// // ll A[N];
// // ll B[N];
// // ll A[bound_N]; // 使10^5
// // ll B[bound_N]; // 使10^5
// // FOR( i , 0 , N ){
// // cin >> A[i] >> B[i];
// // }
constexpr PrimeEnumeration<ll,3163> pe{};
map<int,int> prime_set{};
vector<int> Prime[N];
Exponent.resize( N );
FOR( i , 0 , N ){
auto& Prime_i = Prime[i];
SetPrimeFactorisation( pe , A[i] , Prime_i , Exponent[i] );
FOR_ITR( Prime_i ){
prime_set[*itr];
}
}
int prime_size = 0;
FOR_ITR( prime_set ){
itr->second = prime_size++;
}
FOR( i , 0 , N ){
vector<int> temp( prime_size );
int prime_i_size = Prime[i].size();
FOR( j , 0 , prime_i_size ){
temp[prime_set[Prime[i][j]]] = Exponent[i][j];
}
Prime[i].resize( prime_size );
Exponent[i] = temp;
}
// //
// int P[N];
// int P_inv[N];
// FOR( i , 0 , N ){
// cin >> P[i];
// P_inv[--P[i]] = i;
// }
//
e<int>.resize( N );
// e<path>.resize( N );
FOR( j , 0 , M ){
CIN_ASSERT( uj , 1 , N );
CIN_ASSERT( vj , 1 , N );
uj--;
vj--;
e<int>[uj].push_back( vj );
e<int>[vj].push_back( uj );
// // CIN( ll , wj );
// // e<path>[uj].push_back( { vj , wj } );
// // e<path>[vj].push_back( { uj , wj } );
}
current_num = 0;
FOR_ITR( prime_set ){
EnumerationDijkstra<int,ll,Max<ll>,Zero<ll>,E<path>,250,Id<int>,Id<int> > d{ int( N ) };
vector<ll> answer{};
d.Solve( 0 , answer );
FOR( i , 1 , N ){
Prime[i][current_num] = answer[i];
}
current_num++;
}
COUT( A[0] );
FOR( i , 1 , N ){
ll answer = 1;
FOR_ITR( prime_set ){
POWER_MOD( power , itr->first , Prime[i][itr->second] , P );
( answer *= power ) %= P;
}
COUT( answer );
}
// //
// T3<ll> data[M];
// FOR( j , 0 , M ){
// CIN( ll , x , y , z );
// data[j] = { x , y , z };
// }
// //
// CIN( int , Q );
// // DEXPR( int , bound_Q , 100000 , 100 ); //
// // CIN_ASSERT( Q , 1 , bound_Q ); //
// // T3<int> query[Q];
// // T2<int> query[Q];
// FOR( q , 0 , Q ){
// CIN( int , type );
// if( type == 1 ){
// CIN( int , x , y );
// // query[q] = { type , x , y };
// } else if( type == 2 ){
// CIN( int , x , y );
// // query[q] = { type , x , y };
// } else {
// CIN( int , x , y );
// // query[q] = { type , x , y };
// }
// // CIN( int , x , y );
// // // query[q] = { x , y };
// }
// // sort( query , query + Q );
// // FOR( q , 0 , Q ){
// // auto& [x,y] = query[q];
// // // auto& [type,x,y] = query[q];
// // }
// // 使H,W
// DEXPR( int , bound_H , 2000 , 30 );
// // DEXPR( int , bound_H , 100000 , 10 ); // 05
// // CEXPR( int , bound_H , 1000000000 ); // 09
// CEXPR( int , bound_W , bound_H );
// static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );
// CEXPR( int , bound_HW , bound_H * bound_W );
// // CEXPR( int , bound_HW , 100000 ); // 05
// // CEXPR( int , bound_HW , 1000000 ); // 06
// //
// cin >> H >> W;
// // SET_ASSERT( H , 1 , bound_H ); // 2*10^3
// // SET_ASSERT( W , 1 , bound_W ); // 2*10^3
// H_minus = H - 1;
// W_minus = W - 1;
// HW = H * W;
// // assert( HW <= bound_HW ); // 4*10^6
// string S[H];
// FOR( i , 0 , H ){
// cin >> S[i];
// // SetEdgeOnGrid( S[i] , i , e<int> );
// // SetWallOnGrid( S[i] , i , non_wall );
// }
// // {h,w}: EnumHW( v )
// // {h,w}: EnumHW_inv( h , w );
// // (i,j)->(k,h): DirectionNumberOnGrid( i , j , k , h );
// // v->w: DirectionNumberOnGrid( v , w );
// // U<->DR<->L: ReverseDirectionNumberOnGrid( n );
// auto answer = Answer( N , M , K );
// RETURN( answer );
// // COUT( answer );
// // COUT_A( A , N );
}
inline void Experiment()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COUT( N , M , K , ":" , Naive( N , M , K ) );
// }
// }
// // cout << Naive( N ) << ",\n"[N==bound];
// }
}
inline void SmallTest()
{
// CEXPR( int , bound , 10 );
// FOREQ( N , 0 , bound ){
// FOREQ( M , 0 , bound ){
// FOREQ( K , 0 , bound ){
// COMPARE( N , M , K );
// }
// }
// // COMPARE( N );
// }
}
REPEAT_MAIN(1);
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0