結果

問題 No.2498 OX Operations
ユーザー 👑 rin204rin204
提出日時 2023-10-09 21:28:01
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3,465 ms / 4,000 ms
コード長 22,393 bytes
コンパイル時間 4,164 ms
コンパイル使用メモリ 275,160 KB
実行使用メモリ 177,780 KB
最終ジャッジ日時 2023-10-09 21:28:41
合計ジャッジ時間 39,205 ms
ジャッジサーバーID
(参考情報)
judge13 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,376 KB
testcase_01 AC 2 ms
4,372 KB
testcase_02 AC 1 ms
4,372 KB
testcase_03 AC 2 ms
4,376 KB
testcase_04 AC 2 ms
4,372 KB
testcase_05 AC 1 ms
4,376 KB
testcase_06 AC 2 ms
4,376 KB
testcase_07 AC 2 ms
4,372 KB
testcase_08 AC 2 ms
4,376 KB
testcase_09 AC 2 ms
4,372 KB
testcase_10 AC 2 ms
4,376 KB
testcase_11 AC 6 ms
4,372 KB
testcase_12 AC 15 ms
4,380 KB
testcase_13 AC 12 ms
4,372 KB
testcase_14 AC 17 ms
4,376 KB
testcase_15 AC 2,163 ms
140,840 KB
testcase_16 AC 3,237 ms
156,424 KB
testcase_17 AC 1,549 ms
135,636 KB
testcase_18 AC 2,580 ms
176,688 KB
testcase_19 AC 1,938 ms
175,656 KB
testcase_20 AC 2,899 ms
176,928 KB
testcase_21 AC 3,454 ms
175,232 KB
testcase_22 AC 2,044 ms
58,688 KB
testcase_23 AC 1,925 ms
46,780 KB
testcase_24 AC 3,456 ms
177,780 KB
testcase_25 AC 3,439 ms
177,648 KB
testcase_26 AC 3,465 ms
177,716 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;

namespace templates {
// type
using ll  = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));

// for loop
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

// declare and input
// clang-format off
#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define DOUBLE(...) double __VA_ARGS__; STRING(str___); __VA_ARGS__ = stod(str___);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);
// clang-format on

// const value
const ll MOD1   = 1000000007;
const ll MOD9   = 998244353;
const double PI = acos(-1);

// other macro
#ifndef RIN__LOCAL
#define endl "\n"
#endif
#define spa ' '
#define len(A) ll(A.size())
#define all(A) begin(A), end(A)

// function
vector<char> stoc(string &S) {
    int n = S.size();
    vector<char> ret(n);
    for (int i = 0; i < n; i++) ret[i] = S[i];
    return ret;
}
string ctos(vector<char> &S) {
    int n      = S.size();
    string ret = "";
    for (int i = 0; i < n; i++) ret += S[i];
    return ret;
}

template <class T>
auto min(const T &a) {
    return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
    return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
    return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
    auto b = clamp(a, l, r);
    return (a != b ? a = b, 1 : 0);
}

template <typename T>
T sum(vector<T> &A) {
    T tot = 0;
    for (auto a : A) tot += a;
    return tot;
}

template <typename T>
vector<T> compression(vector<T> X) {
    sort(all(X));
    X.erase(unique(all(X)), X.end());
    return X;
}

// input and output
namespace io {

// vector<T>
template <typename T>
istream &operator>>(istream &is, vector<T> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << ' ';
    }
    return os;
}

// vector<vector<T>>
template <typename T>
istream &operator>>(istream &is, vector<vector<T>> &A) {
    for (auto &a : A) is >> a;
    return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// pair<S, T>
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &A) {
    is >> A.first >> A.second;
    return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, pair<S, T> &A) {
    os << A.first << ' ' << A.second;
    return os;
}

// vector<pair<S, T>>
template <typename S, typename T>
ostream &operator<<(ostream &os, vector<pair<S, T>> &A) {
    for (size_t i = 0; i < A.size(); i++) {
        os << A[i];
        if (i != A.size() - 1) os << endl;
    }
    return os;
}

// set<T>
template <typename T>
ostream &operator<<(ostream &os, set<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << ' ';
    }
    return os;
}

// unordered_set<T>
template <typename T>
ostream &operator<<(ostream &os, unordered_set<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << ' ';
    }
    return os;
}

// multiset<T>
template <typename T>
ostream &operator<<(ostream &os, multiset<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << ' ';
    }
    return os;
}

// unordered_multiset<T>
template <typename T>
ostream &operator<<(ostream &os, unordered_multiset<T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << endl;
    }
    return os;
}

// map<S, T>
template <typename S, typename T>
ostream &operator<<(ostream &os, map<S, T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << endl;
    }
    return os;
}

// unordered_map<S, T>
template <typename S, typename T>
ostream &operator<<(ostream &os, unordered_map<S, T> &A) {
    for (auto itr = A.begin(); itr != A.end(); itr++) {
        os << *itr;
        if (next(itr) != A.end()) os << endl;
    }
    return os;
}

// tuple
template <typename T, size_t N>
struct TuplePrint {
    static ostream &print(ostream &os, const T &t) {
        TuplePrint<T, N - 1>::print(os, t);
        os << ' ' << get<N - 1>(t);
        return os;
    }
};
template <typename T>
struct TuplePrint<T, 1> {
    static ostream &print(ostream &os, const T &t) {
        os << get<0>(t);
        return os;
    }
};
template <typename... Args>
ostream &operator<<(ostream &os, const tuple<Args...> &t) {
    TuplePrint<decltype(t), sizeof...(Args)>::print(os, t);
    return os;
}

// queue<T>
template <typename T>
ostream &operator<<(ostream &os, queue<T> &A) {
    auto B = A;
    while (!B.empty()) {
        os << B.front();
        B.pop();
        if (!B.empty()) os << ' ';
    }
    return os;
}

// deque<T>
template <typename T>
ostream &operator<<(ostream &os, deque<T> &A) {
    auto B = A;
    while (!B.empty()) {
        os << B.front();
        B.pop_front();
        if (!B.empty()) os << ' ';
    }
    return os;
}

// stack<T>
template <typename T>
ostream &operator<<(ostream &os, stack<T> &A) {
    auto B = A;
    stack<T> C;
    while (!B.empty()) {
        C.push(B.top());
        B.pop();
    }
    while (!C.empty()) {
        os << C.top();
        C.pop();
        if (!C.empty()) os << ' ';
    }
    return os;
}

// priority_queue<T>
template <typename T>
ostream &operator<<(ostream &os, priority_queue<T> &A) {
    auto B = A;
    while (!B.empty()) {
        os << B.top();
        B.pop();
        if (!B.empty()) os << endl;
    }
    return os;
}

// bitset<N>
template <size_t N>
ostream &operator<<(ostream &os, bitset<N> &A) {
    for (size_t i = 0; i < N; i++) {
        os << A[i];
    }
    return os;
}

// io functions
void FLUSH() {
    cout << flush;
}

void print() {
    cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&...tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(forward<Tail>(tail)...);
}

template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << sep;
    }
    cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
    cout << A << end;
}
template <typename T>
void prispa(T A) {
    priend(A, spa);
}
template <typename T, typename S>
bool printif(bool f, T A, S B) {
    if (f)
        print(A);
    else
        print(B);
    return f;
}

template <class... T>
void inp(T &...a) {
    (cin >> ... >> a);
}

} // namespace io
using namespace io;

// read graph
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<int>> edges(n, vector<int>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        u -= indexed;
        v -= indexed;
        edges[u].push_back(v);
        if (!direct) edges[v].push_back(u);
    }
    return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
    return read_edges(n, n - 1, false, indexed);
}

template <typename T = long long>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        T w;
        inp(w);
        u -= indexed;
        v -= indexed;
        edges[u].push_back({v, w});
        if (!direct) edges[v].push_back({u, w});
    }
    return edges;
}
template <typename T = long long>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
    return read_wedges<T>(n, n - 1, false, indexed);
}

// yes / no
namespace yesno {

// yes
inline bool yes(bool f = true) {
    cout << (f ? "yes" : "no") << endl;
    return f;
}
inline bool Yes(bool f = true) {
    cout << (f ? "Yes" : "No") << endl;
    return f;
}
inline bool YES(bool f = true) {
    cout << (f ? "YES" : "NO") << endl;
    return f;
}

// no
inline bool no(bool f = true) {
    cout << (!f ? "yes" : "no") << endl;
    return f;
}
inline bool No(bool f = true) {
    cout << (!f ? "Yes" : "No") << endl;
    return f;
}
inline bool NO(bool f = true) {
    cout << (!f ? "YES" : "NO") << endl;
    return f;
}

// possible
inline bool possible(bool f = true) {
    cout << (f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Possible(bool f = true) {
    cout << (f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool POSSIBLE(bool f = true) {
    cout << (f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// impossible
inline bool impossible(bool f = true) {
    cout << (!f ? "possible" : "impossible") << endl;
    return f;
}
inline bool Impossible(bool f = true) {
    cout << (!f ? "Possible" : "Impossible") << endl;
    return f;
}
inline bool IMPOSSIBLE(bool f = true) {
    cout << (!f ? "POSSIBLE" : "IMPOSSIBLE") << endl;
    return f;
}

// Alice Bob
inline bool Alice(bool f = true) {
    cout << (f ? "Alice" : "Bob") << endl;
    return f;
}
inline bool Bob(bool f = true) {
    cout << (f ? "Bob" : "Alice") << endl;
    return f;
}

// Takahashi Aoki
inline bool Takahashi(bool f = true) {
    cout << (f ? "Takahashi" : "Aoki") << endl;
    return f;
}
inline bool Aoki(bool f = true) {
    cout << (f ? "Aoki" : "Takahashi") << endl;
    return f;
}

} // namespace yesno
using namespace yesno;

} // namespace templates
using namespace templates;

template <class S, class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct dual_segtree {
  public:
    explicit dual_segtree(const vector<S> &v) : _n(int(v.size())), d(v) {
        size = 1;
        log  = 0;
        while (size < _n) {
            log++;
            size <<= 1;
        }
        lz = vector<F>(size, id());
    }

    S prod(int l, int r) {
        assert(l + 1 == r);

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        return d[l - size];
    }

    S get(int x) {
        return prod(x, x + 1);
    }

    void apply(int l, int r, F f) {
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }
    }

  private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;
    void all_apply(int k, F f) {
        if (k < size) {
            lz[k] = composition(f, lz[k]);
        } else {
            d[k - size] = mapping(f, d[k - size]);
        }
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

template <int MOD>
struct Modint {
    int x;
    Modint() : x(0) {}
    Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Modint &operator+=(const Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Modint &operator-=(const Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Modint &operator*=(const Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Modint &operator/=(const Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Modint &operator%=(const Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Modint operator-() const {
        return Modint(-x);
    }

    Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Modint operator++(int) {
        Modint result = *this;
        ++*this;
        return result;
    }

    Modint operator--(int) {
        Modint result = *this;
        --*this;
        return result;
    }

    friend Modint operator+(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) += rhs;
    }

    friend Modint operator-(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) -= rhs;
    }

    friend Modint operator*(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) *= rhs;
    }

    friend Modint operator/(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) /= rhs;
    }

    friend Modint operator%(const Modint &lhs, const Modint &rhs) {
        assert(rhs.x == 0);
        return Modint(lhs);
    }

    bool operator==(const Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Modint &rhs) const {
        return x < rhs.x;
    }

    bool operator<=(const Modint &rhs) const {
        return x <= rhs.x;
    }

    bool operator>(const Modint &rhs) const {
        return x > rhs.x;
    }

    bool operator>=(const Modint &rhs) const {
        return x >= rhs.x;
    }

    Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Modint(u);
    }

    Modint pow(int64_t k) const {
        Modint ret(1);
        Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Modint &p) {
        int64_t y;
        is >> y;
        p = Modint<MOD>(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};

struct Arbitrary_Modint {
    int x;
    static int MOD;

    static void set_mod(int mod) {
        MOD = mod;
    }

    Arbitrary_Modint() : x(0) {}
    Arbitrary_Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Arbitrary_Modint operator-() const {
        return Arbitrary_Modint(-x);
    }

    Arbitrary_Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Arbitrary_Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Arbitrary_Modint operator++(int) {
        Arbitrary_Modint result = *this;
        ++*this;
        return result;
    }

    Arbitrary_Modint operator--(int) {
        Arbitrary_Modint result = *this;
        --*this;
        return result;
    }

    friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) += rhs;
    }

    friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) -= rhs;
    }

    friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) *= rhs;
    }

    friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) /= rhs;
    }

    friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        assert(rhs.x == 0);
        return Arbitrary_Modint(lhs);
    }

    bool operator==(const Arbitrary_Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Arbitrary_Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Arbitrary_Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Arbitrary_Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Arbitrary_Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Arbitrary_Modint &rhs) {
        return x >= rhs.x;
    }

    Arbitrary_Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Arbitrary_Modint(u);
    }

    Arbitrary_Modint pow(int64_t k) const {
        Arbitrary_Modint ret(1);
        Arbitrary_Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Arbitrary_Modint &p) {
        int64_t y;
        is >> y;
        p = Arbitrary_Modint(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};
int Arbitrary_Modint::MOD = 998244353;

using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint  = Arbitrary_Modint;
using mint    = modint9;

struct QU {
    char c;
    int l;
    int r;
    ll x;

    friend istream &operator>>(istream &is, QU &A) {
        is >> A.c >> A.l >> A.r >> A.x;
        A.l--;
        return is;
    }
};

const ll mask = (1 << 30) - 1;

using S = ll;

struct F {
    ll z;
    ll o;
};
S mapping(F f, S x) {
    if (x == -1) return x;
    S ret = 0;
    fori(i, 30) {
        if ((x >> i) & 1)
            ret |= f.o & (1 << i);
        else
            ret |= f.z & (1 << i);
    }
    return ret;
}
F composition(F g, F f) {
    ll z = 0;
    ll o = 0;
    fori(i, 30) {
        if ((f.z >> i) & 1)
            z |= g.o & (1 << i);
        else
            z |= g.z & (1 << i);

        if ((f.o >> i) & 1)
            o |= g.o & (1 << i);
        else
            o |= g.z & (1 << i);
    }

    return F{z, o};
}
F id() {
    return {0, mask};
}

void solve() {
    LL(n, Q);
    VEC(ll, M, n);
    VEC(QU, query, Q);

    vvvec(ll, dp, n, 30, 2, 0);
    fori(k, 2) {
        vec(S, ini, n);
        fori(i, n) ini[i] = k == 0 ? 0 : mask;
        dual_segtree<S, F, mapping, composition, id> seg(ini);
        for (auto &tmp : query) {
            if (tmp.c == 'o')
                seg.apply(tmp.l, tmp.r, {tmp.x, mask});
            else
                seg.apply(tmp.l, tmp.r, {tmp.x, mask ^ tmp.x});
        }

        fori(i, n) {
            auto x = seg.get(i);
            fori(j, 30) {
                dp[i][j][k] = (x >> j) & 1;
            }
        }
    }

    vec(mint, cnt, 31, 0);
    cnt[0] = 1;
    fori(i, n) {
        ll m    = M[i];
        int add = 0;
        vec(mint, c2, 31, 0);

        vvec(mint, c3, 31, 31, 0);
        c3[0][0] = 1;
        fori(k, 30) {
            fori(j, 30) {
                c3[k + 1][j + dp[i][k][0]] += c3[k][j];
                c3[k + 1][j + dp[i][k][1]] += c3[k][j];
            }
        }

        fori(j, 29, -1, -1) {
            if (m & (1 << j)) {
                add += dp[i][j][0];
                // vec(mint, c3, 31, 0);
                // c3[add] = 1;
                // fori(k, j - 1, -1, -1) {
                //     vec(mint, c4, 31, 0);
                //     fori(t, 30) {
                //         c4[t + dp[i][k][0]] += c3[t];
                //         c4[t + dp[i][k][1]] += c3[t];
                //     }
                //     swap(c3, c4);
                // }
                fori(t, 31 - add) c2[t + add] += c3[j][t];
                add -= dp[i][j][0];
                add += dp[i][j][1];

            } else {
                add += dp[i][j][0];
            }
        }
        c2[add]++;
        vec(mint, nex, 31, 0);
        fori(i, 31) fori(j, 31) {
            nex[max(i, j)] += cnt[i] * c2[j];
        }
        swap(cnt, nex);
    }
    // print(cnt);
    mint ans = 0;
    fori(i, 31) ans += cnt[i] * i;
    print(ans);
}

int main() {
    cin.tie(0)->sync_with_stdio(0);
    // cout << fixed << setprecision(12);
    int t;
    t = 1;
    // cin >> t;
    while (t--) solve();
    return 0;
}
0