結果
問題 | No.1463 Hungry Kanten |
ユーザー |
|
提出日時 | 2023-10-10 01:27:39 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 299 ms / 2,000 ms |
コード長 | 3,460 bytes |
コンパイル時間 | 4,050 ms |
コンパイル使用メモリ | 265,464 KB |
最終ジャッジ日時 | 2025-02-17 06:34:42 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>using namespace std;#include <atcoder/all>#include <time.h>using namespace atcoder;using ll = long long;using vll = vector<ll>;using vvll = vector<vll>;using vvvll = vector<vvll>;using vb = vector<bool>;using vvb = vector<vb>;using vvvb = vector<vvb>;#define all(A) A.begin(),A.end()#define rep(i, n) for (ll i = 0; i < (ll) (n); i++)template<class T>bool chmax(T& p, T q, bool C = 1) {if (C == 0 && p == q) {return 1;}if (p < q) {p = q;return 1;}else {return 0;}}template<class T>bool chmin(T& p, T q, bool C = 1) {if (C == 0 && p == q) {return 1;}if (p > q) {p = q;return 1;}else {return 0;}}ll modPow(long long a, long long n, long long p) {if (n == 0) return 1; // 0乗にも対応する場合if (n == 1) return a % p;if (n % 2 == 1) return (a * modPow(a, n - 1, p)) % p;long long t = modPow(a, n / 2, p);return (t * t) % p;}ll gcd(ll(a), ll(b)) {if (a == 0)return b;if (b == 0)return a;ll c = a;while (a % b != 0) {c = a % b;a = b;b = c;}return b;}ll sqrtz(ll N) {ll L = 0;ll R = sqrt(N) + 10000;while (abs(R - L) > 1) {ll mid = (R + L) / 2;if (mid * mid <= N)L = mid;else R = mid;}return L;}using mint = modint998244353;using vm = vector<mint>;using vvm = vector<vm>;using vvvm = vector<vvm>;vector<mint> fact, factinv, inv;const ll mod = 998244353;void prenCkModp(ll n) {fact.resize(n + 5);factinv.resize(n + 5);inv.resize(n + 5);fact[0] = fact[1] = 1;factinv[0] = factinv[1] = 1;inv[1] = 1;for (ll i = 2; i < n + 5; i++) {fact[i] = (fact[i - 1] * i);inv[i] = (mod - ((inv[mod % i] * (mod / i))));factinv[i] = (factinv[i - 1] * inv[i]);}}mint nCk(ll n, ll k) {if (n < k || k < 0) return 0;return (fact[n] * ((factinv[k] * factinv[n - k])));}bool DEB = 1;template<class T>vector<vector<T>> rot(vector<vector<T>>& A) {ll H = A.size();ll W = A[0].size();assert(H == W);vector<vector<T>> res(W, vector<T>(H, 0));rep(h, H)rep(w, W) {res[w][h] = A[h][W - w - 1];}return res;}int main() {cin.tie(nullptr);ios::sync_with_stdio(false);ll N,K;cin>>N>>K;vll A(N);rep(i,N)cin>>A[i];vll PN(N,0);vector<map<ll,ll>> P(N);rep(i,N){ll n=A[i];for(ll j=2;j*j<=n;j++){while(n%j==0){PN[i]+=j;n/=j;P[i][j]++;}}if(n!=1){P[i][n]++;PN[i]+=n;}}set<pair<ll,ll>> S;rep(bit,(1<<N)){ll s=0,num=0;ll pn=0,k=1;rep(n,N){if(bit&(1<<n)){num++;}}if(num<K)continue;rep(n,N){if(bit&(1<<n)){s+=A[n];pn+=PN[n];k*=A[n];}}//cout<<bit<<" "<<k<<" "<<pn<<endl;S.insert({k,pn});ll su=0;ll ss=s;for(ll j=2;j*j<=s;j++){while(s%j==0){s/=j;su+=j;}}if(s!=1)su+=s;S.insert({ss,su});}cout<<S.size()<<endl;}