結果
問題 | No.2507 Yet Another Subgraph Counting |
ユーザー | torisasami4 |
提出日時 | 2023-10-12 11:30:43 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,041 bytes |
コンパイル時間 | 3,496 ms |
コンパイル使用メモリ | 245,936 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-14 10:23:06 |
合計ジャッジ時間 | 8,067 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 10 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 9 ms
5,376 KB |
testcase_12 | AC | 3 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 9 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 10 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 4 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 9 ms
5,376 KB |
testcase_24 | AC | 3 ms
5,376 KB |
testcase_25 | AC | 25 ms
5,376 KB |
testcase_26 | WA | - |
testcase_27 | AC | 10 ms
5,376 KB |
testcase_28 | AC | 25 ms
5,376 KB |
testcase_29 | AC | 3 ms
5,376 KB |
testcase_30 | WA | - |
testcase_31 | AC | 220 ms
5,376 KB |
testcase_32 | AC | 220 ms
5,376 KB |
testcase_33 | AC | 10 ms
5,376 KB |
testcase_34 | AC | 4 ms
5,376 KB |
testcase_35 | AC | 9 ms
5,376 KB |
testcase_36 | AC | 3 ms
5,376 KB |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | AC | 220 ms
5,376 KB |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | AC | 70 ms
5,376 KB |
testcase_44 | AC | 219 ms
5,376 KB |
testcase_45 | AC | 9 ms
5,376 KB |
testcase_46 | AC | 10 ms
5,376 KB |
testcase_47 | AC | 217 ms
5,376 KB |
testcase_48 | AC | 3 ms
5,376 KB |
testcase_49 | WA | - |
testcase_50 | AC | 5 ms
5,376 KB |
testcase_51 | AC | 71 ms
5,376 KB |
ソースコード
// #define _GLIBCXX_DEBUG #pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math") #include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < int(n); i++) #define per(i, n) for (int i = (n)-1; 0 <= i; i--) #define rep2(i, l, r) for (int i = (l); i < int(r); i++) #define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--) #define each(e, v) for (auto& e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() template <typename T> void print(const vector<T>& v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } using ll = long long; using pii = pair<int, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T& x, const T& y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T& x, const T& y) { return (x > y) ? (x = y, true) : false; } template <class T> using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T> using maxheap = std::priority_queue<T>; template <typename T> int lb(const vector<T>& v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T>& v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T>& v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } // __int128_t gcd(__int128_t a, __int128_t b) { // if (a == 0) // return b; // if (b == 0) // return a; // __int128_t cnt = a % b; // while (cnt != 0) { // a = b; // b = cnt; // cnt = a % b; // } // return b; // } struct Union_Find_Tree { vector<int> data; const int n; int cnt; Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {} int root(int x) { if (data[x] < 0) return x; return data[x] = root(data[x]); } int operator[](int i) { return root(i); } bool unite(int x, int y) { x = root(x), y = root(y); if (x == y) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y], data[y] = x; cnt--; return true; } int size(int x) { return -data[root(x)]; } int count() { return cnt; }; bool same(int x, int y) { return root(x) == root(y); } void clear() { cnt = n; fill(begin(data), end(data), -1); } }; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int& operator+=(const Mod_Int& p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int& operator-=(const Mod_Int& p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int& operator*=(const Mod_Int& p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int& operator/=(const Mod_Int& p) { *this *= p.inverse(); return *this; } Mod_Int& operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int& operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int& p) const { return x == p.x; } bool operator!=(const Mod_Int& p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream& operator<<(ostream& os, const Mod_Int& p) { return os << p.x; } friend istream& operator>>(istream& is, Mod_Int& p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; ll mpow2(ll x, ll n, ll mod) { ll ans = 1; x %= mod; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } ans %= mod; return ans; } template <typename T> T modinv(T a, const T& m) { T b = m, u = 1, v = 0; while (b > 0) { T t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return u >= 0 ? u % m : (m - (-u) % m) % m; } ll divide_int(ll a, ll b) { if (b < 0) a = -a, b = -b; return (a >= 0 ? a / b : (a - b + 1) / b); } // const int MOD = 1000000007; const int MOD = 998244353; using mint = Mod_Int<MOD>; // ----- library ------- template <typename T> void fast_zeta_transform(vector<T> &a, bool upper) { int n = a.size(); assert((n & (n - 1)) == 0); for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j++) { if (!(j & i)) { if (upper) { a[j] += a[j | i]; } else { a[j | i] += a[j]; } } } } } template <typename T> void fast_mobius_transform(vector<T> &a, bool upper) { int n = a.size(); assert((n & (n - 1)) == 0); for (int i = 1; i < n; i <<= 1) { for (int j = 0; j < n; j++) { if (!(j & i)) { if (upper) { a[j] -= a[j | i]; } else { a[j | i] -= a[j]; } } } } } template <typename T> vector<T> subset_convolve(const vector<T> &a, const vector<T> &b) { int n = a.size(); assert((int)b.size() == n && (n & (n - 1)) == 0); int k = __builtin_ctz(n); vector<vector<T>> A(k + 1, vector<T>(n, 0)), B(k + 1, vector<T>(n, 0)), C(k + 1, vector<T>(n, 0)); for (int i = 0; i < n; i++) { int t = __builtin_popcount(i); A[t][i] = a[i], B[t][i] = b[i]; } for (int i = 0; i <= k; i++) fast_zeta_transform(A[i], false), fast_zeta_transform(B[i], false); for (int i = 0; i <= k; i++) { for (int j = 0; j <= k - i; j++) { for (int l = 0; l < n; l++) C[i + j][l] += A[i][l] * B[j][l]; } } for (int i = 0; i <= k; i++) fast_mobius_transform(C[i], false); vector<T> c(n); for (int i = 0; i < n; i++) c[i] = C[__builtin_popcount(i)][i]; return c; } template <typename T> vector<T> exp_of_set_power_series(const vector<T> &a) { int n = a.size(); assert((n & (n - 1)) == 0 && a[0] == 0); vector<T> ret(n, 0); ret[0] = 1; for (int i = 1; i < n; i <<= 1) { vector<T> f(begin(a) + i, begin(a) + (i << 1)); vector<T> g(begin(ret), begin(ret) + i); auto h = subset_convolve(f, g); copy(begin(h), end(h), begin(ret) + i); } return ret; } // ----- library ------- int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << fixed << setprecision(15); int n, m; cin >> n >> m; vector<vector<int>> g(n, vector<int>(n, 0)); rep(i, m) { int u, v; cin >> u >> v; u--, v--; g[u][v] = 1, g[v][u] = 1; } vector<vector<mint>> dp(1 << n, vector<mint>(n, 0)); rep(i, n) dp[1 << i][i] = 1; rep2(i, 1, 1 << n) { int s = __builtin_ctz(i); rep(j, n) rep2(k, s + 1, n) if (!(i & (1 << k)) && g[j][k]) dp[i | (1 << k)][k] += dp[i][j]; } vector<mint> c(1 << n); rep2(i, 1, 1 << n) { int k = __builtin_popcount(i); if (k == 1) { c[i] = 1; continue; } if (k == 2) { c[i] = 0; continue; } c[i] = 0; int s = __builtin_ctz(i); rep(j, n) c[i] += dp[i][j] * g[s][j]; c[i] /= 2; } vector<mint> E(1 << n, 0); rep(i, 1 << n) rep(j, n) rep2(k, j + 1, n) if ((i & (1 << j)) && (i & (1 << k))) E[i] += g[j][k]; vector<mint> f(1 << n, 0); rep2(C, 1, 1 << n) { int m = 1; while (m <= C) m *= 2; int D = (m - 1) & ~C; vector<mint> g; for (int T = D;; T = (T - 1) & D) { g.eb(f[T] * (E[T | C] - E[T] - E[C])); if (T == 0) break; } reverse(all(g)); auto h = exp_of_set_power_series(g); f[C] += c[C]; for (int T = D, idx = sz(h) - 1; idx > 0; T = (T - 1) & D, idx--) f[C | T] += c[C] * h[idx]; } cout << exp_of_set_power_series(f).back() << endl; }