結果
問題 | No.2507 Yet Another Subgraph Counting |
ユーザー |
![]() |
提出日時 | 2023-10-12 11:31:59 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 195 ms / 2,000 ms |
コード長 | 9,029 bytes |
コンパイル時間 | 3,008 ms |
コンパイル使用メモリ | 244,872 KB |
最終ジャッジ日時 | 2025-02-17 06:47:09 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 52 |
ソースコード
// #define _GLIBCXX_DEBUG#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < int(n); i++)#define per(i, n) for (int i = (n)-1; 0 <= i; i--)#define rep2(i, l, r) for (int i = (l); i < int(r); i++)#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)#define each(e, v) for (auto& e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()template <typename T> void print(const vector<T>& v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}using ll = long long;using pii = pair<int, int>;using pll = pair<ll, ll>;template <typename T> bool chmax(T& x, const T& y) {return (x < y) ? (x = y, true) : false;}template <typename T> bool chmin(T& x, const T& y) {return (x > y) ? (x = y, true) : false;}template <class T>using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;template <class T> using maxheap = std::priority_queue<T>;template <typename T> int lb(const vector<T>& v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T> int ub(const vector<T>& v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T> void rearrange(vector<T>& v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}// __int128_t gcd(__int128_t a, __int128_t b) {// if (a == 0)// return b;// if (b == 0)// return a;// __int128_t cnt = a % b;// while (cnt != 0) {// a = b;// b = cnt;// cnt = a % b;// }// return b;// }struct Union_Find_Tree {vector<int> data;const int n;int cnt;Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}int root(int x) {if (data[x] < 0) return x;return data[x] = root(data[x]);}int operator[](int i) { return root(i); }bool unite(int x, int y) {x = root(x), y = root(y);if (x == y) return false;if (data[x] > data[y]) swap(x, y);data[x] += data[y], data[y] = x;cnt--;return true;}int size(int x) { return -data[root(x)]; }int count() { return cnt; };bool same(int x, int y) { return root(x) == root(y); }void clear() {cnt = n;fill(begin(data), end(data), -1);}};template <int mod> struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int& operator+=(const Mod_Int& p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int& operator-=(const Mod_Int& p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int& operator*=(const Mod_Int& p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int& operator/=(const Mod_Int& p) {*this *= p.inverse();return *this;}Mod_Int& operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int& operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int& p) const { return x == p.x; }bool operator!=(const Mod_Int& p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream& operator<<(ostream& os, const Mod_Int& p) {return os << p.x;}friend istream& operator>>(istream& is, Mod_Int& p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};ll mpow2(ll x, ll n, ll mod) {ll ans = 1;x %= mod;while (n != 0) {if (n & 1) ans = ans * x % mod;x = x * x % mod;n = n >> 1;}ans %= mod;return ans;}template <typename T> T modinv(T a, const T& m) {T b = m, u = 1, v = 0;while (b > 0) {T t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return u >= 0 ? u % m : (m - (-u) % m) % m;}ll divide_int(ll a, ll b) {if (b < 0) a = -a, b = -b;return (a >= 0 ? a / b : (a - b + 1) / b);}// const int MOD = 1000000007;const int MOD = 998244353;using mint = Mod_Int<MOD>;// ----- library -------template <typename T>void fast_zeta_transform(vector<T> &a, bool upper) {int n = a.size();assert((n & (n - 1)) == 0);for (int i = 1; i < n; i <<= 1) {for (int j = 0; j < n; j++) {if (!(j & i)) {if (upper) {a[j] += a[j | i];} else {a[j | i] += a[j];}}}}}template <typename T>void fast_mobius_transform(vector<T> &a, bool upper) {int n = a.size();assert((n & (n - 1)) == 0);for (int i = 1; i < n; i <<= 1) {for (int j = 0; j < n; j++) {if (!(j & i)) {if (upper) {a[j] -= a[j | i];} else {a[j | i] -= a[j];}}}}}template <typename T>vector<T> subset_convolve(const vector<T> &a, const vector<T> &b) {int n = a.size();assert((int)b.size() == n && (n & (n - 1)) == 0);int k = __builtin_ctz(n);vector<vector<T>> A(k + 1, vector<T>(n, 0)), B(k + 1, vector<T>(n, 0)), C(k + 1, vector<T>(n, 0));for (int i = 0; i < n; i++) {int t = __builtin_popcount(i);A[t][i] = a[i], B[t][i] = b[i];}for (int i = 0; i <= k; i++) fast_zeta_transform(A[i], false), fast_zeta_transform(B[i], false);for (int i = 0; i <= k; i++) {for (int j = 0; j <= k - i; j++) {for (int l = 0; l < n; l++) C[i + j][l] += A[i][l] * B[j][l];}}for (int i = 0; i <= k; i++) fast_mobius_transform(C[i], false);vector<T> c(n);for (int i = 0; i < n; i++) c[i] = C[__builtin_popcount(i)][i];return c;}template <typename T>vector<T> exp_of_set_power_series(const vector<T> &a) {int n = a.size();assert((n & (n - 1)) == 0 && a[0] == 0);vector<T> ret(n, 0);ret[0] = 1;for (int i = 1; i < n; i <<= 1) {vector<T> f(begin(a) + i, begin(a) + (i << 1));vector<T> g(begin(ret), begin(ret) + i);auto h = subset_convolve(f, g);copy(begin(h), end(h), begin(ret) + i);}return ret;}// ----- library -------int main() {ios::sync_with_stdio(false);std::cin.tie(nullptr);cout << fixed << setprecision(15);int n, m;cin >> n >> m;vector<vector<int>> g(n, vector<int>(n, 0));rep(i, m) {int u, v;cin >> u >> v;u--, v--;g[u][v] = 1, g[v][u] = 1;}vector<vector<ll>> dp(1 << n, vector<ll>(n, 0));rep(i, n) dp[1 << i][i] = 1;rep2(i, 1, 1 << n) {int s = __builtin_ctz(i);rep(j, n) rep2(k, s + 1, n) if (!(i & (1 << k)) && g[j][k]) dp[i | (1 << k)][k] += dp[i][j];}vector<ll> c(1 << n);rep2(i, 1, 1 << n) {int k = __builtin_popcount(i);if (k == 1) {c[i] = 1;continue;}if (k == 2) {c[i] = 0;continue;}c[i] = 0;int s = __builtin_ctz(i);rep(j, n) c[i] += dp[i][j] * g[s][j];c[i] /= 2;}vector<ll> E(1 << n, 0);rep(i, 1 << n) rep(j, n) rep2(k, j + 1, n) if ((i & (1 << j)) && (i & (1 << k))) E[i] += g[j][k];vector<ll> f(1 << n, 0);rep2(C, 1, 1 << n) {int m = 1;while (m <= C) m *= 2;int D = (m - 1) & ~C;vector<ll> g;for (int T = D;; T = (T - 1) & D) {g.eb(f[T] * (E[T | C] - E[T] - E[C]));if (T == 0)break;}reverse(all(g));auto h = exp_of_set_power_series(g);f[C] += c[C];for (int T = D, idx = sz(h) - 1; idx > 0; T = (T - 1) & D, idx--) f[C | T] += c[C] * h[idx];}cout << exp_of_set_power_series(f).back() << endl;}