結果
問題 | No.2506 Sum of Weighted Powers |
ユーザー | risujiroh |
提出日時 | 2023-10-13 21:14:22 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 17,340 bytes |
コンパイル時間 | 6,794 ms |
コンパイル使用メモリ | 337,616 KB |
実行使用メモリ | 10,536 KB |
最終ジャッジ日時 | 2024-09-15 16:45:51 |
合計ジャッジ時間 | 12,816 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 5 ms
5,376 KB |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 5 ms
5,376 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 4 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | WA | - |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | AC | 5 ms
5,376 KB |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | AC | 266 ms
9,928 KB |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | AC | 308 ms
10,532 KB |
testcase_32 | WA | - |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | RE | - |
testcase_36 | RE | - |
testcase_37 | RE | - |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
ソースコード
#if __INCLUDE_LEVEL__ == 0 #include __BASE_FILE__ namespace { using Fp = atcoder::static_modint<943718401>; void solve() { int n; Fp x; scan(n, x); vector<Fp> a(n + 1); scan(a); vector<Fp> b(n + 1); scan(b); vector<Fp> c(n + 1); scan(c); x = kth_root(x.val(), 3, Fp::mod()); for (int i : rep(n + 1)) { a[i] *= x.pow(i).pow(i).pow(i); b[i] *= x.inv().pow(i).pow(i).pow(i); c[i] *= x.inv().pow(i).pow(i).pow(i); } b = atcoder::convolution(b, c); Fp ans = 0; for (int i : rep(n + 1)) { ans += a[i] * b[i]; } print(ans); } } // namespace int main() { ios::sync_with_stdio(false); cin.tie(nullptr); solve(); } #else // __INCLUDE_LEVEL__ #include <bits/stdc++.h> using namespace std; #include <atcoder/convolution> namespace std { template <class T1, class T2> istream& operator>>(istream& is, pair<T1, T2>& p) { return is >> p.first >> p.second; } template <class... Ts> istream& operator>>(istream& is, tuple<Ts...>& t) { return apply([&is](auto&... xs) -> istream& { return (is >> ... >> xs); }, t); } template <class R, enable_if_t<!is_convertible_v<R, string>>* = nullptr> auto operator>>(istream& is, R&& r) -> decltype(is >> *begin(r)) { for (auto&& e : r) { is >> e; } return is; } template <class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p) { return os << p.first << ' ' << p.second; } template <class... Ts> ostream& operator<<(ostream& os, const tuple<Ts...>& t) { auto f = [&os](const auto&... xs) -> ostream& { [[maybe_unused]] auto sep = ""; ((os << exchange(sep, " ") << xs), ...); return os; }; return apply(f, t); } template <class R, enable_if_t<!is_convertible_v<R, string_view>>* = nullptr> auto operator<<(ostream& os, R&& r) -> decltype(os << *begin(r)) { auto sep = ""; for (auto&& e : r) { os << exchange(sep, " ") << e; } return os; } } // namespace std namespace atcoder { template <class T, internal::is_modint_t<T>* = nullptr> istream& operator>>(istream& is, T& x) { int v; is >> v; x = T::raw(v); return is; } template <class T, internal::is_modint_t<T>* = nullptr> ostream& operator<<(ostream& os, const T& x) { return os << x.val(); } } // namespace atcoder template <class... Ts> void scan(Ts&&... xs) { (cin >> ... >> xs); } template <class... Ts> void print(Ts&&... xs) { cout << tie(xs...) << '\n'; } inline auto rep(int l, int r) { return views::iota(min(l, r), r); } inline auto rep(int n) { return rep(0, n); } inline auto rep1(int l, int r) { return rep(l, r + 1); } inline auto rep1(int n) { return rep(1, n + 1); } inline auto per(int l, int r) { return rep(l, r) | views::reverse; } inline auto per(int n) { return per(0, n); } inline auto per1(int l, int r) { return per(l, r + 1); } inline auto per1(int n) { return per(1, n + 1); } inline auto len = ranges::ssize; // https://nyaannyaan.github.io/library/modulo/mod-kth-root.hpp using namespace std; namespace internal { template <typename T> using is_broadly_integral = typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>, true_type, false_type>::type; template <typename T> using is_broadly_signed = typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>, true_type, false_type>::type; template <typename T> using is_broadly_unsigned = typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>, true_type, false_type>::type; #define ENABLE_VALUE(x) \ template <typename T> \ constexpr bool x##_v = x<T>::value; ENABLE_VALUE(is_broadly_integral); ENABLE_VALUE(is_broadly_signed); ENABLE_VALUE(is_broadly_unsigned); #undef ENABLE_VALUE } // namespace internal namespace internal { using namespace std; template <typename T> T safe_mod(T a, T p) { a %= p; if constexpr (is_broadly_signed_v<T>) { if (a < 0) a += p; } return a; } template <typename T> pair<T, T> inv_gcd(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); if (a == 0) return {p, 0}; T b = p, x = 1, y = 0; while (a) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } if (y < 0) y += p / b; return {b, y}; } template <typename T> T inv(T a, T p) { static_assert(is_broadly_signed_v<T>); a = safe_mod(a, p); T b = p, x = 1, y = 0; while (a) { T q = b / a; swap(a, b %= a); swap(x, y -= q * x); } assert(b == 1); return y < 0 ? y + p : y; } template <typename T, typename U> T modpow(T a, U n, T p) { a = safe_mod(a, p); T ret = 1 % p; while (n) { if (n & 1) ret = U(ret) * a % p; a = U(a) * a % p; n >>= 1; } return ret; } template <typename T> pair<T, T> crt(const vector<T>& r, const vector<T>& m) { static_assert(is_broadly_signed_v<T>); assert(r.size() == m.size()); int n = int(r.size()); T r0 = 0, m0 = 1; for (int i = 0; i < n; i++) { assert(1 <= m[i]); T r1 = safe_mod(r[i], m[i]), m1 = m[i]; if (m0 < m1) swap(r0, r1), swap(m0, m1); if (m0 % m1 == 0) { if (r0 % m1 != r1) return {0, 0}; continue; } auto [g, im] = inv_gcd(m0, m1); T u1 = m1 / g; if ((r1 - r0) % g) return {0, 0}; T x = (r1 - r0) / g % u1 * im % u1; r0 += x * m0; m0 *= u1; if (r0 < 0) r0 += m0; } return {r0, m0}; } } // namespace internal using namespace std; template <typename Int, typename UInt, typename Long, typename ULong, int id> struct ArbitraryLazyMontgomeryModIntBase { using mint = ArbitraryLazyMontgomeryModIntBase; inline static UInt mod; inline static UInt r; inline static UInt n2; static constexpr int bit_length = sizeof(UInt) * 8; static UInt get_r() { UInt ret = mod; while (mod * ret != 1) ret *= UInt(2) - mod * ret; return ret; } static void set_mod(UInt m) { assert(m < (UInt(1u) << (bit_length - 2))); assert((m & 1) == 1); mod = m, n2 = -ULong(m) % m, r = get_r(); } UInt a; ArbitraryLazyMontgomeryModIntBase() : a(0) {} ArbitraryLazyMontgomeryModIntBase(const Long& b) : a(reduce(ULong(b % mod + mod) * n2)){}; static UInt reduce(const ULong& b) { return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length; } mint& operator+=(const mint& b) { if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod; return *this; } mint& operator-=(const mint& b) { if (Int(a -= b.a) < 0) a += 2 * mod; return *this; } mint& operator*=(const mint& b) { a = reduce(ULong(a) * b.a); return *this; } mint& operator/=(const mint& b) { *this *= b.inverse(); return *this; } mint operator+(const mint& b) const { return mint(*this) += b; } mint operator-(const mint& b) const { return mint(*this) -= b; } mint operator*(const mint& b) const { return mint(*this) *= b; } mint operator/(const mint& b) const { return mint(*this) /= b; } bool operator==(const mint& b) const { return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a); } bool operator!=(const mint& b) const { return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a); } mint operator-() const { return mint(0) - mint(*this); } mint operator+() const { return mint(*this); } mint pow(ULong n) const { mint ret(1), mul(*this); while (n > 0) { if (n & 1) ret *= mul; mul *= mul, n >>= 1; } return ret; } friend ostream& operator<<(ostream& os, const mint& b) { return os << b.get(); } friend istream& operator>>(istream& is, mint& b) { Long t; is >> t; b = ArbitraryLazyMontgomeryModIntBase(t); return (is); } mint inverse() const { Int x = get(), y = get_mod(), u = 1, v = 0; while (y > 0) { Int t = x / y; swap(x -= t * y, y); swap(u -= t * v, v); } return mint{u}; } UInt get() const { UInt ret = reduce(a); return ret >= mod ? ret - mod : ret; } static UInt get_mod() { return mod; } }; template <int id> using ArbitraryLazyMontgomeryModInt = ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long, unsigned long long, id>; template <int id> using ArbitraryLazyMontgomeryModInt64bit = ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t, __uint128_t, id>; using namespace std; using namespace std; namespace internal { unsigned long long non_deterministic_seed() { unsigned long long m = chrono::duration_cast<chrono::nanoseconds>( chrono::high_resolution_clock::now().time_since_epoch()) .count(); m ^= 9845834732710364265uLL; m ^= m << 24, m ^= m >> 31, m ^= m << 35; return m; } unsigned long long deterministic_seed() { return 88172645463325252UL; } unsigned long long seed() { return non_deterministic_seed(); } } // namespace internal namespace my_rand { using i64 = long long; using u64 = unsigned long long; u64 rng() { static u64 _x = internal::seed(); return _x ^= _x << 7, _x ^= _x >> 9; } i64 rng(i64 l, i64 r) { assert(l <= r); return l + rng() % u64(r - l + 1); } i64 randint(i64 l, i64 r) { assert(l < r); return l + rng() % u64(r - l); } vector<i64> randset(i64 l, i64 r, i64 n) { assert(l <= r && n <= r - l); unordered_set<i64> s; for (i64 i = n; i; --i) { i64 m = randint(l, r + 1 - i); if (s.find(m) != s.end()) m = r - i; s.insert(m); } vector<i64> ret; for (auto& x : s) ret.push_back(x); return ret; } double rnd() { return rng() * 5.42101086242752217004e-20; } double rnd(double l, double r) { assert(l < r); return l + rnd() * (r - l); } template <typename T> void randshf(vector<T>& v) { int n = v.size(); for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]); } } // namespace my_rand using my_rand::randint; using my_rand::randset; using my_rand::randshf; using my_rand::rnd; using my_rand::rng; using namespace std; namespace fast_factorize { template <typename T, typename U> bool miller_rabin(const T& n, vector<T> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; T d = n - 1; while (d % 2 == 0) d /= 2; U e = 1, rev = n - 1; for (T w : ws) { if (w % n == 0) continue; T t = d; U y = internal::modpow<T, U>(w, t, n); while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool miller_rabin_u64(unsigned long long n) { return miller_rabin<unsigned long long, __uint128_t>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } template <typename mint> bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) { if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (mint::get_mod() != n) mint::set_mod(n); unsigned long long d = n - 1; while (~d & 1) d >>= 1; mint e = 1, rev = n - 1; for (unsigned long long w : ws) { if (w % n == 0) continue; unsigned long long t = d; mint y = mint(w).pow(t); while (t != n - 1 && y != e && y != rev) y *= y, t *= 2; if (y != rev && t % 2 == 0) return false; } return true; } bool is_prime(unsigned long long n) { using mint32 = ArbitraryLazyMontgomeryModInt<96229631>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>; if (n <= 2) return n == 2; if (n % 2 == 0) return false; if (n < (1uLL << 30)) { return miller_rabin<mint32>(n, {2, 7, 61}); } else if (n < (1uLL << 62)) { return miller_rabin<mint64>( n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022}); } else { return miller_rabin_u64(n); } } } // namespace fast_factorize using fast_factorize::is_prime; namespace fast_factorize { using u64 = uint64_t; template <typename mint, typename T> T pollard_rho(T n) { if (~n & 1) return 2; if (is_prime(n)) return n; if (mint::get_mod() != n) mint::set_mod(n); mint R, one = 1; auto f = [&](mint x) { return x * x + R; }; auto rnd_ = [&]() { return rng() % (n - 2) + 2; }; while (1) { mint x, y, ys, q = one; R = rnd_(), y = rnd_(); T g = 1; constexpr int m = 128; for (int r = 1; g == 1; r <<= 1) { x = y; for (int i = 0; i < r; ++i) y = f(y); for (int k = 0; g == 1 && k < r; k += m) { ys = y; for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y)); g = gcd(q.get(), n); } } if (g == n) do g = gcd((x - (ys = f(ys))).get(), n); while (g == 1); if (g != n) return g; } exit(1); } using i64 = long long; vector<i64> inner_factorize(u64 n) { using mint32 = ArbitraryLazyMontgomeryModInt<452288976>; using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>; if (n <= 1) return {}; u64 p; if (n <= (1LL << 30)) { p = pollard_rho<mint32, uint32_t>(n); } else if (n <= (1LL << 62)) { p = pollard_rho<mint64, uint64_t>(n); } else { exit(1); } if (p == n) return {i64(p)}; auto l = inner_factorize(p); auto r = inner_factorize(n / p); copy(begin(r), end(r), back_inserter(l)); return l; } vector<i64> factorize(u64 n) { auto ret = inner_factorize(n); sort(begin(ret), end(ret)); return ret; } map<i64, i64> factor_count(u64 n) { map<i64, i64> mp; for (auto& x : factorize(n)) mp[x]++; return mp; } vector<i64> divisors(u64 n) { if (n == 0) return {}; vector<pair<i64, i64>> v; for (auto& p : factorize(n)) { if (v.empty() || v.back().first != p) { v.emplace_back(p, 1); } else { v.back().second++; } } vector<i64> ret; auto f = [&](auto rc, int i, i64 x) -> void { if (i == (int)v.size()) { ret.push_back(x); return; } rc(rc, i + 1, x); for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first); }; f(f, 0, 1); sort(begin(ret), end(ret)); return ret; } } // namespace fast_factorize using fast_factorize::divisors; using fast_factorize::factor_count; using fast_factorize::factorize; namespace kth_root_mod { template <typename T> struct Memo { Memo(const T& g, int s, int period) : size(1 << __lg(min(s, period))), mask(size - 1), period(period), vs(size), os(size + 1) { T x(1); for (int i = 0; i < size; ++i, x *= g) os[x.get() & mask]++; for (int i = 1; i < size; ++i) os[i] += os[i - 1]; x = 1; for (int i = 0; i < size; ++i, x *= g) vs[--os[x.get() & mask]] = {x, i}; gpow = x; os[size] = size; } int find(T x) const { for (int t = 0; t < period; t += size, x *= gpow) { for (int m = (x.get() & mask), i = os[m]; i < os[m + 1]; ++i) { if (x == vs[i].first) { int ret = vs[i].second - t; return ret < 0 ? ret + period : ret; } } } assert(0); } T gpow; int size, mask, period; vector<pair<T, int>> vs; vector<int> os; }; template <typename INT, typename LINT, typename mint> mint pe_root(INT c, INT pi, INT ei, INT p) { if (mint::get_mod() != decltype(mint::a)(p)) mint::set_mod(p); INT s = p - 1, t = 0; while (s % pi == 0) s /= pi, ++t; INT pe = 1; for (INT _ = 0; _ < ei; ++_) pe *= pi; INT u = internal::inv(pe - s % pe, pe); mint mc = c, one = 1; mint z = mc.pow((s * u + 1) / pe); mint zpe = mc.pow(s * u); if (zpe == one) return z; assert(t > ei); mint vs; { INT ptm1 = 1; for (INT _ = 0; _ < t - 1; ++_) ptm1 *= pi; for (mint v = 2;; v += one) { vs = v.pow(s); if (vs.pow(ptm1) != one) break; } } mint vspe = vs.pow(pe); INT vs_e = ei; mint base = vspe; for (INT _ = 0; _ < t - ei - 1; _++) base = base.pow(pi); Memo<mint> memo(base, (INT)(sqrt(t - ei) * sqrt(pi)) + 1, pi); while (zpe != one) { mint tmp = zpe; INT td = 0; while (tmp != 1) ++td, tmp = tmp.pow(pi); INT e = t - td; while (vs_e != e) { vs = vs.pow(pi); vspe = vspe.pow(pi); ++vs_e; } mint base_zpe = zpe.inverse(); for (INT _ = 0; _ < td - 1; _++) base_zpe = base_zpe.pow(pi); INT bsgs = memo.find(base_zpe); z *= vs.pow(bsgs); zpe *= vspe.pow(bsgs); } return z; } template <typename INT, typename LINT, typename mint> INT inner_kth_root(INT a, INT k, INT p) { a %= p; if (k == 0) return a == 1 ? a : -1; if (a <= 1 || k <= 1) return a; assert(p > 2); if (mint::get_mod() != decltype(mint::a)(p)) mint::set_mod(p); INT g = gcd(p - 1, k); if (internal::modpow<INT, LINT>(a, (p - 1) / g, p) != 1) return -1; a = mint(a).pow(internal::inv(k / g, (p - 1) / g)).get(); unordered_map<INT, int> fac; for (auto& f : factorize(g)) fac[f]++; if (mint::get_mod() != decltype(mint::a)(p)) mint::set_mod(p); for (auto pp : fac) a = pe_root<INT, LINT, mint>(a, pp.first, pp.second, p).get(); return a; } int64_t kth_root(int64_t a, int64_t k, int64_t p) { if (max({a, k, p}) < (1LL << 30)) return inner_kth_root<int32_t, int64_t, ArbitraryLazyMontgomeryModInt<163553130>>(a, k, p); else return inner_kth_root<int64_t, __int128_t, ArbitraryLazyMontgomeryModInt64bit<504025646>>(a, k, p); } } // namespace kth_root_mod using kth_root_mod::kth_root; #endif // __INCLUDE_LEVEL__