結果
| 問題 |
No.2506 Sum of Weighted Powers
|
| コンテスト | |
| ユーザー |
risujiroh
|
| 提出日時 | 2023-10-13 21:14:22 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 17,340 bytes |
| コンパイル時間 | 6,794 ms |
| コンパイル使用メモリ | 337,616 KB |
| 実行使用メモリ | 10,536 KB |
| 最終ジャッジ日時 | 2024-09-15 16:45:51 |
| 合計ジャッジ時間 | 12,816 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 WA * 22 RE * 3 |
ソースコード
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
namespace {
using Fp = atcoder::static_modint<943718401>;
void solve() {
int n;
Fp x;
scan(n, x);
vector<Fp> a(n + 1);
scan(a);
vector<Fp> b(n + 1);
scan(b);
vector<Fp> c(n + 1);
scan(c);
x = kth_root(x.val(), 3, Fp::mod());
for (int i : rep(n + 1)) {
a[i] *= x.pow(i).pow(i).pow(i);
b[i] *= x.inv().pow(i).pow(i).pow(i);
c[i] *= x.inv().pow(i).pow(i).pow(i);
}
b = atcoder::convolution(b, c);
Fp ans = 0;
for (int i : rep(n + 1)) {
ans += a[i] * b[i];
}
print(ans);
}
} // namespace
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
}
#else // __INCLUDE_LEVEL__
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/convolution>
namespace std {
template <class T1, class T2>
istream& operator>>(istream& is, pair<T1, T2>& p) {
return is >> p.first >> p.second;
}
template <class... Ts>
istream& operator>>(istream& is, tuple<Ts...>& t) {
return apply([&is](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
template <class R, enable_if_t<!is_convertible_v<R, string>>* = nullptr>
auto operator>>(istream& is, R&& r) -> decltype(is >> *begin(r)) {
for (auto&& e : r) {
is >> e;
}
return is;
}
template <class T1, class T2>
ostream& operator<<(ostream& os, const pair<T1, T2>& p) {
return os << p.first << ' ' << p.second;
}
template <class... Ts>
ostream& operator<<(ostream& os, const tuple<Ts...>& t) {
auto f = [&os](const auto&... xs) -> ostream& {
[[maybe_unused]] auto sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
template <class R, enable_if_t<!is_convertible_v<R, string_view>>* = nullptr>
auto operator<<(ostream& os, R&& r) -> decltype(os << *begin(r)) {
auto sep = "";
for (auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
} // namespace std
namespace atcoder {
template <class T, internal::is_modint_t<T>* = nullptr>
istream& operator>>(istream& is, T& x) {
int v;
is >> v;
x = T::raw(v);
return is;
}
template <class T, internal::is_modint_t<T>* = nullptr>
ostream& operator<<(ostream& os, const T& x) {
return os << x.val();
}
} // namespace atcoder
template <class... Ts>
void scan(Ts&&... xs) {
(cin >> ... >> xs);
}
template <class... Ts>
void print(Ts&&... xs) {
cout << tie(xs...) << '\n';
}
inline auto rep(int l, int r) { return views::iota(min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
inline auto per(int l, int r) { return rep(l, r) | views::reverse; }
inline auto per(int n) { return per(0, n); }
inline auto per1(int l, int r) { return per(l, r + 1); }
inline auto per1(int n) { return per(1, n + 1); }
inline auto len = ranges::ssize;
// https://nyaannyaan.github.io/library/modulo/mod-kth-root.hpp
using namespace std;
namespace internal {
template <typename T>
using is_broadly_integral =
typename conditional_t<is_integral_v<T> || is_same_v<T, __int128_t> ||
is_same_v<T, __uint128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_signed =
typename conditional_t<is_signed_v<T> || is_same_v<T, __int128_t>,
true_type, false_type>::type;
template <typename T>
using is_broadly_unsigned =
typename conditional_t<is_unsigned_v<T> || is_same_v<T, __uint128_t>,
true_type, false_type>::type;
#define ENABLE_VALUE(x) \
template <typename T> \
constexpr bool x##_v = x<T>::value;
ENABLE_VALUE(is_broadly_integral);
ENABLE_VALUE(is_broadly_signed);
ENABLE_VALUE(is_broadly_unsigned);
#undef ENABLE_VALUE
} // namespace internal
namespace internal {
using namespace std;
template <typename T>
T safe_mod(T a, T p) {
a %= p;
if constexpr (is_broadly_signed_v<T>) {
if (a < 0) a += p;
}
return a;
}
template <typename T>
pair<T, T> inv_gcd(T a, T p) {
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
if (a == 0) return {p, 0};
T b = p, x = 1, y = 0;
while (a) {
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
if (y < 0) y += p / b;
return {b, y};
}
template <typename T>
T inv(T a, T p) {
static_assert(is_broadly_signed_v<T>);
a = safe_mod(a, p);
T b = p, x = 1, y = 0;
while (a) {
T q = b / a;
swap(a, b %= a);
swap(x, y -= q * x);
}
assert(b == 1);
return y < 0 ? y + p : y;
}
template <typename T, typename U>
T modpow(T a, U n, T p) {
a = safe_mod(a, p);
T ret = 1 % p;
while (n) {
if (n & 1) ret = U(ret) * a % p;
a = U(a) * a % p;
n >>= 1;
}
return ret;
}
template <typename T>
pair<T, T> crt(const vector<T>& r, const vector<T>& m) {
static_assert(is_broadly_signed_v<T>);
assert(r.size() == m.size());
int n = int(r.size());
T r0 = 0, m0 = 1;
for (int i = 0; i < n; i++) {
assert(1 <= m[i]);
T r1 = safe_mod(r[i], m[i]), m1 = m[i];
if (m0 < m1) swap(r0, r1), swap(m0, m1);
if (m0 % m1 == 0) {
if (r0 % m1 != r1) return {0, 0};
continue;
}
auto [g, im] = inv_gcd(m0, m1);
T u1 = m1 / g;
if ((r1 - r0) % g) return {0, 0};
T x = (r1 - r0) / g % u1 * im % u1;
r0 += x * m0;
m0 *= u1;
if (r0 < 0) r0 += m0;
}
return {r0, m0};
}
} // namespace internal
using namespace std;
template <typename Int, typename UInt, typename Long, typename ULong, int id>
struct ArbitraryLazyMontgomeryModIntBase {
using mint = ArbitraryLazyMontgomeryModIntBase;
inline static UInt mod;
inline static UInt r;
inline static UInt n2;
static constexpr int bit_length = sizeof(UInt) * 8;
static UInt get_r() {
UInt ret = mod;
while (mod * ret != 1) ret *= UInt(2) - mod * ret;
return ret;
}
static void set_mod(UInt m) {
assert(m < (UInt(1u) << (bit_length - 2)));
assert((m & 1) == 1);
mod = m, n2 = -ULong(m) % m, r = get_r();
}
UInt a;
ArbitraryLazyMontgomeryModIntBase() : a(0) {}
ArbitraryLazyMontgomeryModIntBase(const Long& b)
: a(reduce(ULong(b % mod + mod) * n2)){};
static UInt reduce(const ULong& b) {
return (b + ULong(UInt(b) * UInt(-r)) * mod) >> bit_length;
}
mint& operator+=(const mint& b) {
if (Int(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint& b) {
if (Int(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint& b) {
a = reduce(ULong(a) * b.a);
return *this;
}
mint& operator/=(const mint& b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint& b) const { return mint(*this) += b; }
mint operator-(const mint& b) const { return mint(*this) -= b; }
mint operator*(const mint& b) const { return mint(*this) *= b; }
mint operator/(const mint& b) const { return mint(*this) /= b; }
bool operator==(const mint& b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint& b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint(0) - mint(*this); }
mint operator+() const { return mint(*this); }
mint pow(ULong n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
Long t;
is >> t;
b = ArbitraryLazyMontgomeryModIntBase(t);
return (is);
}
mint inverse() const {
Int x = get(), y = get_mod(), u = 1, v = 0;
while (y > 0) {
Int t = x / y;
swap(x -= t * y, y);
swap(u -= t * v, v);
}
return mint{u};
}
UInt get() const {
UInt ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static UInt get_mod() { return mod; }
};
template <int id>
using ArbitraryLazyMontgomeryModInt =
ArbitraryLazyMontgomeryModIntBase<int, unsigned int, long long,
unsigned long long, id>;
template <int id>
using ArbitraryLazyMontgomeryModInt64bit =
ArbitraryLazyMontgomeryModIntBase<long long, unsigned long long, __int128_t,
__uint128_t, id>;
using namespace std;
using namespace std;
namespace internal {
unsigned long long non_deterministic_seed() {
unsigned long long m =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
m ^= 9845834732710364265uLL;
m ^= m << 24, m ^= m >> 31, m ^= m << 35;
return m;
}
unsigned long long deterministic_seed() { return 88172645463325252UL; }
unsigned long long seed() { return non_deterministic_seed(); }
} // namespace internal
namespace my_rand {
using i64 = long long;
using u64 = unsigned long long;
u64 rng() {
static u64 _x = internal::seed();
return _x ^= _x << 7, _x ^= _x >> 9;
}
i64 rng(i64 l, i64 r) {
assert(l <= r);
return l + rng() % u64(r - l + 1);
}
i64 randint(i64 l, i64 r) {
assert(l < r);
return l + rng() % u64(r - l);
}
vector<i64> randset(i64 l, i64 r, i64 n) {
assert(l <= r && n <= r - l);
unordered_set<i64> s;
for (i64 i = n; i; --i) {
i64 m = randint(l, r + 1 - i);
if (s.find(m) != s.end()) m = r - i;
s.insert(m);
}
vector<i64> ret;
for (auto& x : s) ret.push_back(x);
return ret;
}
double rnd() { return rng() * 5.42101086242752217004e-20; }
double rnd(double l, double r) {
assert(l < r);
return l + rnd() * (r - l);
}
template <typename T>
void randshf(vector<T>& v) {
int n = v.size();
for (int i = 1; i < n; i++) swap(v[i], v[randint(0, i + 1)]);
}
} // namespace my_rand
using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;
using namespace std;
namespace fast_factorize {
template <typename T, typename U>
bool miller_rabin(const T& n, vector<T> ws) {
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
T d = n - 1;
while (d % 2 == 0) d /= 2;
U e = 1, rev = n - 1;
for (T w : ws) {
if (w % n == 0) continue;
T t = d;
U y = internal::modpow<T, U>(w, t, n);
while (t != n - 1 && y != e && y != rev) y = y * y % n, t *= 2;
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool miller_rabin_u64(unsigned long long n) {
return miller_rabin<unsigned long long, __uint128_t>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}
template <typename mint>
bool miller_rabin(unsigned long long n, vector<unsigned long long> ws) {
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
if (mint::get_mod() != n) mint::set_mod(n);
unsigned long long d = n - 1;
while (~d & 1) d >>= 1;
mint e = 1, rev = n - 1;
for (unsigned long long w : ws) {
if (w % n == 0) continue;
unsigned long long t = d;
mint y = mint(w).pow(t);
while (t != n - 1 && y != e && y != rev) y *= y, t *= 2;
if (y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(unsigned long long n) {
using mint32 = ArbitraryLazyMontgomeryModInt<96229631>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<622196072>;
if (n <= 2) return n == 2;
if (n % 2 == 0) return false;
if (n < (1uLL << 30)) {
return miller_rabin<mint32>(n, {2, 7, 61});
} else if (n < (1uLL << 62)) {
return miller_rabin<mint64>(
n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
} else {
return miller_rabin_u64(n);
}
}
} // namespace fast_factorize
using fast_factorize::is_prime;
namespace fast_factorize {
using u64 = uint64_t;
template <typename mint, typename T>
T pollard_rho(T n) {
if (~n & 1) return 2;
if (is_prime(n)) return n;
if (mint::get_mod() != n) mint::set_mod(n);
mint R, one = 1;
auto f = [&](mint x) { return x * x + R; };
auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
while (1) {
mint x, y, ys, q = one;
R = rnd_(), y = rnd_();
T g = 1;
constexpr int m = 128;
for (int r = 1; g == 1; r <<= 1) {
x = y;
for (int i = 0; i < r; ++i) y = f(y);
for (int k = 0; g == 1 && k < r; k += m) {
ys = y;
for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
g = gcd(q.get(), n);
}
}
if (g == n) do
g = gcd((x - (ys = f(ys))).get(), n);
while (g == 1);
if (g != n) return g;
}
exit(1);
}
using i64 = long long;
vector<i64> inner_factorize(u64 n) {
using mint32 = ArbitraryLazyMontgomeryModInt<452288976>;
using mint64 = ArbitraryLazyMontgomeryModInt64bit<401243123>;
if (n <= 1) return {};
u64 p;
if (n <= (1LL << 30)) {
p = pollard_rho<mint32, uint32_t>(n);
} else if (n <= (1LL << 62)) {
p = pollard_rho<mint64, uint64_t>(n);
} else {
exit(1);
}
if (p == n) return {i64(p)};
auto l = inner_factorize(p);
auto r = inner_factorize(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
vector<i64> factorize(u64 n) {
auto ret = inner_factorize(n);
sort(begin(ret), end(ret));
return ret;
}
map<i64, i64> factor_count(u64 n) {
map<i64, i64> mp;
for (auto& x : factorize(n)) mp[x]++;
return mp;
}
vector<i64> divisors(u64 n) {
if (n == 0) return {};
vector<pair<i64, i64>> v;
for (auto& p : factorize(n)) {
if (v.empty() || v.back().first != p) {
v.emplace_back(p, 1);
} else {
v.back().second++;
}
}
vector<i64> ret;
auto f = [&](auto rc, int i, i64 x) -> void {
if (i == (int)v.size()) {
ret.push_back(x);
return;
}
rc(rc, i + 1, x);
for (int j = 0; j < v[i].second; j++) rc(rc, i + 1, x *= v[i].first);
};
f(f, 0, 1);
sort(begin(ret), end(ret));
return ret;
}
} // namespace fast_factorize
using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
namespace kth_root_mod {
template <typename T>
struct Memo {
Memo(const T& g, int s, int period)
: size(1 << __lg(min(s, period))),
mask(size - 1),
period(period),
vs(size),
os(size + 1) {
T x(1);
for (int i = 0; i < size; ++i, x *= g) os[x.get() & mask]++;
for (int i = 1; i < size; ++i) os[i] += os[i - 1];
x = 1;
for (int i = 0; i < size; ++i, x *= g) vs[--os[x.get() & mask]] = {x, i};
gpow = x;
os[size] = size;
}
int find(T x) const {
for (int t = 0; t < period; t += size, x *= gpow) {
for (int m = (x.get() & mask), i = os[m]; i < os[m + 1]; ++i) {
if (x == vs[i].first) {
int ret = vs[i].second - t;
return ret < 0 ? ret + period : ret;
}
}
}
assert(0);
}
T gpow;
int size, mask, period;
vector<pair<T, int>> vs;
vector<int> os;
};
template <typename INT, typename LINT, typename mint>
mint pe_root(INT c, INT pi, INT ei, INT p) {
if (mint::get_mod() != decltype(mint::a)(p)) mint::set_mod(p);
INT s = p - 1, t = 0;
while (s % pi == 0) s /= pi, ++t;
INT pe = 1;
for (INT _ = 0; _ < ei; ++_) pe *= pi;
INT u = internal::inv(pe - s % pe, pe);
mint mc = c, one = 1;
mint z = mc.pow((s * u + 1) / pe);
mint zpe = mc.pow(s * u);
if (zpe == one) return z;
assert(t > ei);
mint vs;
{
INT ptm1 = 1;
for (INT _ = 0; _ < t - 1; ++_) ptm1 *= pi;
for (mint v = 2;; v += one) {
vs = v.pow(s);
if (vs.pow(ptm1) != one) break;
}
}
mint vspe = vs.pow(pe);
INT vs_e = ei;
mint base = vspe;
for (INT _ = 0; _ < t - ei - 1; _++) base = base.pow(pi);
Memo<mint> memo(base, (INT)(sqrt(t - ei) * sqrt(pi)) + 1, pi);
while (zpe != one) {
mint tmp = zpe;
INT td = 0;
while (tmp != 1) ++td, tmp = tmp.pow(pi);
INT e = t - td;
while (vs_e != e) {
vs = vs.pow(pi);
vspe = vspe.pow(pi);
++vs_e;
}
mint base_zpe = zpe.inverse();
for (INT _ = 0; _ < td - 1; _++) base_zpe = base_zpe.pow(pi);
INT bsgs = memo.find(base_zpe);
z *= vs.pow(bsgs);
zpe *= vspe.pow(bsgs);
}
return z;
}
template <typename INT, typename LINT, typename mint>
INT inner_kth_root(INT a, INT k, INT p) {
a %= p;
if (k == 0) return a == 1 ? a : -1;
if (a <= 1 || k <= 1) return a;
assert(p > 2);
if (mint::get_mod() != decltype(mint::a)(p)) mint::set_mod(p);
INT g = gcd(p - 1, k);
if (internal::modpow<INT, LINT>(a, (p - 1) / g, p) != 1) return -1;
a = mint(a).pow(internal::inv(k / g, (p - 1) / g)).get();
unordered_map<INT, int> fac;
for (auto& f : factorize(g)) fac[f]++;
if (mint::get_mod() != decltype(mint::a)(p)) mint::set_mod(p);
for (auto pp : fac)
a = pe_root<INT, LINT, mint>(a, pp.first, pp.second, p).get();
return a;
}
int64_t kth_root(int64_t a, int64_t k, int64_t p) {
if (max({a, k, p}) < (1LL << 30))
return inner_kth_root<int32_t, int64_t,
ArbitraryLazyMontgomeryModInt<163553130>>(a, k, p);
else
return inner_kth_root<int64_t, __int128_t,
ArbitraryLazyMontgomeryModInt64bit<504025646>>(a, k,
p);
}
} // namespace kth_root_mod
using kth_root_mod::kth_root;
#endif // __INCLUDE_LEVEL__
risujiroh