結果
問題 | No.2503 Typical Path Counting Problem on a Grid |
ユーザー | milanis48663220 |
提出日時 | 2023-10-14 01:40:03 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 762 ms / 2,000 ms |
コード長 | 4,377 bytes |
コンパイル時間 | 1,514 ms |
コンパイル使用メモリ | 124,096 KB |
実行使用メモリ | 316,032 KB |
最終ジャッジ日時 | 2024-09-15 21:23:40 |
合計ジャッジ時間 | 10,165 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 668 ms
315,904 KB |
testcase_01 | AC | 704 ms
316,032 KB |
testcase_02 | AC | 707 ms
315,904 KB |
testcase_03 | AC | 726 ms
315,904 KB |
testcase_04 | AC | 758 ms
315,904 KB |
testcase_05 | AC | 731 ms
315,904 KB |
testcase_06 | AC | 755 ms
315,776 KB |
testcase_07 | AC | 762 ms
315,904 KB |
testcase_08 | AC | 734 ms
315,904 KB |
testcase_09 | AC | 754 ms
315,904 KB |
ソースコード
#include <iostream> #include <algorithm> #include <iomanip> #include <vector> #include <queue> #include <deque> #include <set> #include <map> #include <tuple> #include <cmath> #include <numeric> #include <functional> #include <cassert> #include <atcoder/modint> #define debug_value(x) cerr << "line" << __LINE__ << ":<" << __func__ << ">:" << #x << "=" << x << endl; #define debug(x) cerr << "line" << __LINE__ << ":<" << __func__ << ">:" << x << endl; template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } using namespace std; typedef long long ll; template<typename T> vector<vector<T>> vec2d(int n, int m, T v){ return vector<vector<T>>(n, vector<T>(m, v)); } template<typename T> vector<vector<vector<T>>> vec3d(int n, int m, int k, T v){ return vector<vector<vector<T>>>(n, vector<vector<T>>(m, vector<T>(k, v))); } template<typename T> void print_vector(vector<T> v, char delimiter=' '){ if(v.empty()) { cout << endl; return; } for(int i = 0; i+1 < v.size(); i++) cout << v[i] << delimiter; cout << v.back() << endl; } using mint = atcoder::modint998244353; ostream& operator<<(ostream& os, const mint& m){ os << m.val(); return os; } template<typename T, int N, int M> class Matrix { public: array<array<T, M>, N> dat; Matrix(T val=0) { for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ dat[i][j] = val; } } } Matrix(array<array<T, M>, N> dat): dat(dat){ } array<T, M>& operator[](int x) { return dat[x]; } }; template<typename T, int N, int M, int K> Matrix<T, N, K> operator*(Matrix<T, N, M> a, Matrix<T, M, K> b){ Matrix<T, N, K> c(T(0)); for(int i = 0; i < N; i++){ for(int j = 0; j < K; j++){ for(int k = 0; k < M; k++){ c.dat[i][j] += a.dat[i][k]*b.dat[k][j]; } } } return c; } template<typename T, int N> Matrix<T, N, N> operator^(Matrix<T, N, N> m, long long r){ Matrix<T, N, N> ans(T(0)); for(int i = 0; i < N; i++) ans[i][i] = T(1); while (r > 0) { if (r&1) ans = (ans*m); m = (m*m); r >>= 1; } return ans; } template <typename T, int N, int M> void print_mat(Matrix<T, N, M> a){ for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ cout << a.dat[i][j] << ' '; } cout << endl; } } template <typename T, int N, int M> ostream& operator<<(ostream& os, const Matrix<T, N, M>& m){ print_mat<T, N, M>(m); return os; } mint naive(ll n, ll m){ if(n > m) swap(n, m); if(n == 0) return mint(1); vector<mint> dp(n+m+1); dp[0] = 1; dp[1] = 2; for(ll x = 2; x <= n+m; x++){ if(x <= n){ dp[x] += dp[x-1]*2*x; dp[x] += dp[x-2]*(x-1); }else if(x <= m){ dp[x] += dp[x-1]*(2*n+1); dp[x] += dp[x-2]*n; }else{ int c = n+m-x+1; dp[x] += dp[x-1]*2*c; dp[x] += dp[x-2]*c; } } // print_vector(dp); return dp[n+m]; } const int N = 10000000; using M = Matrix<mint, 2, 2>; using V = Matrix<mint, 2, 1>; M f0[N+1]; M f1[N+1]; void init(){ f0[1] = M({{ {mint(1), mint(0)}, {mint(0), mint(1)}, }}); for(int x = 2; x <= N; x++){ f0[x] = M({{ {mint(2*x), mint(x-1)}, {mint(1), mint(0)}, }})*f0[x-1]; } f1[0] = M({{ {mint(1), mint(0)}, {mint(0), mint(1)}, }}); for(int x = 1; x <= N; x++){ f1[x] = f1[x-1]*M({{ {mint(2*x), mint(x)}, {mint(1), mint(0)}, }}); } } mint solve(ll n, ll m){ if(n > m) swap(n, m); if(n == 0) return mint(1); mint dp1 = 2; mint dp0 = 1; V v({{ {dp1}, {dp0} }}); v = f0[n]*v; M A({{ {mint(2*n+1), mint(n)}, {mint(1), mint(0)}, }}); v = (A^(m-n))*v; v = f1[n]*v; return v[0][0]; } int main(){ ios::sync_with_stdio(false); cin.tie(0); cout << setprecision(10) << fixed; init(); int t; cin >> t; while(t--) { ll n, m; cin >> n >> m; cout << solve(n, m) << endl; } }