結果
問題 | No.963 門松列列(2) |
ユーザー | Tifa |
提出日時 | 2023-10-14 23:54:33 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 24,107 bytes |
コンパイル時間 | 3,129 ms |
コンパイル使用メモリ | 234,104 KB |
実行使用メモリ | 14,072 KB |
最終ジャッジ日時 | 2024-09-16 17:26:33 |
合計ジャッジ時間 | 12,511 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 3 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2,081 ms
14,072 KB |
testcase_06 | AC | 189 ms
5,376 KB |
testcase_07 | AC | 2,079 ms
13,948 KB |
testcase_08 | TLE | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
ソースコード
#line 1 "src\\test_cpverifier\\yukicoder\\0963.0.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/963" #line 1 "src\\code\\math\\mint_s30.hpp" #line 1 "src\\code\\util\\util.hpp" #include <bits/stdc++.h> namespace tifa_libs { using i8 = int8_t; using u8 = uint8_t; using i16 = int16_t; using u16 = uint16_t; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; using i128 = __int128_t; using u128 = __uint128_t; template <class T> using vec = std::vector<T>; template <class T> using vvec = vec<vec<T>>; template <class T> using vvvec = vec<vvec<T>>; template <class T> using pq = std::priority_queue<T>; template <class T> using pqg = std::priority_queue<T, vec<T>, std::greater<T>>; template <class U, class T> using vvp = vvec<std::pair<U, T>>; template <class T> using ptt = std::pair<T, T>; template <class T> using pt3 = std::tuple<T, T, T>; template <class T> using pt4 = std::tuple<T, T, T, T>; #ifdef ONLINE_JUDGE #undef assert #define assert(x) 42 #endif } // namespace tifa_libs #line 5 "src\\code\\math\\mint_s30.hpp" namespace tifa_libs::math { template <u32 MOD> class mint_s30 { u32 v_{}; static constexpr u32 get_r() { u32 t = 2, iv = MOD * (t - MOD * MOD); iv *= t - MOD * iv, iv *= t - MOD * iv; return iv * (MOD * iv - t); } static constexpr u32 redc(u64 x) { return (u32)((x + (u64)((u32)(x)*R) * MOD) >> 32); } static constexpr u32 norm(u32 x) { return x - (MOD & -((MOD - 1 - x) >> 31)); } static constexpr u32 MOD2 = MOD << 1; static constexpr u32 R = get_r(); static constexpr u32 R2 = -(u64)(MOD) % MOD; static constexpr i32 SMOD = (i32)(MOD); static_assert(MOD & 1); static_assert(-R * MOD == 1); static_assert((MOD >> 30) == 0); static_assert(MOD != 1); public: static constexpr u32 mod() { return MOD; } static constexpr i32 smod() { return SMOD; } constexpr mint_s30() {} template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0> constexpr mint_s30(T v) : v_(redc((u64)(v % SMOD + SMOD) * R2)) {} constexpr u32 val() const { return norm(redc(v_)); } constexpr i32 sval() const { return (i32)norm(redc(v_)); } constexpr bool is_zero() const { return v_ == 0 || v_ == MOD; } template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0> explicit constexpr operator T() const { return (T)(val()); } constexpr mint_s30 operator-() const { mint_s30 res; res.v_ = (MOD2 & -(v_ != 0)) - v_; return res; } constexpr mint_s30 inv() const { i32 x1 = 1, x3 = 0, a = sval(), b = SMOD; while (b != 0) { i32 q = a / b, x1_old = x1, a_old = a; x1 = x3, x3 = x1_old - x3 * q, a = b, b = a_old - b * q; } return mint_s30(x1); } constexpr mint_s30 &operator+=(const mint_s30 &rhs) { v_ += rhs.v_ - MOD2, v_ += MOD2 & -(v_ >> 31); return *this; } constexpr mint_s30 &operator-=(const mint_s30 &rhs) { v_ -= rhs.v_, v_ += MOD2 & -(v_ >> 31); return *this; } constexpr mint_s30 &operator*=(const mint_s30 &rhs) { v_ = redc((u64)(v_)*rhs.v_); return *this; } constexpr mint_s30 &operator/=(const mint_s30 &rhs) { return operator*=(rhs.inv()); } constexpr mint_s30 pow(u64 e) const { for (mint_s30 res(1), x(*this);; x *= x) { if (e & 1) res *= x; if ((e >>= 1) == 0) return res; } } constexpr void swap(mint_s30 &rhs) { auto v = v_; v_ = rhs.v_, rhs.v_ = v; } friend constexpr mint_s30 operator+(const mint_s30 &lhs, const mint_s30 &rhs) { return mint_s30(lhs) += rhs; } friend constexpr mint_s30 operator-(const mint_s30 &lhs, const mint_s30 &rhs) { return mint_s30(lhs) -= rhs; } friend constexpr mint_s30 operator*(const mint_s30 &lhs, const mint_s30 &rhs) { return mint_s30(lhs) *= rhs; } friend constexpr mint_s30 operator/(const mint_s30 &lhs, const mint_s30 &rhs) { return mint_s30(lhs) /= rhs; } friend constexpr bool operator==(const mint_s30 &lhs, const mint_s30 &rhs) { return norm(lhs.v_) == norm(rhs.v_); } friend constexpr bool operator!=(const mint_s30 &lhs, const mint_s30 &rhs) { return norm(lhs.v_) != norm(rhs.v_); } friend constexpr bool operator<(const mint_s30 &lhs, const mint_s30 &rhs) { return lhs.val() < rhs.val(); } friend std::istream &operator>>(std::istream &is, mint_s30 &rhs) { i32 x; is >> x; rhs = mint_s30(x); return is; } friend std::ostream &operator<<(std::ostream &os, const mint_s30 &rhs) { return os << rhs.val(); } friend constexpr u32 abs(mint_s30 const &x) { return x.val(); } }; } // namespace tifa_libs::math #line 1 "src\\code\\poly\\poly_ode.hpp" #line 1 "src\\code\\poly\\poly_exp.hpp" #line 1 "src\\code\\poly\\poly_ln.hpp" #line 1 "src\\code\\poly\\poly_deriv.hpp" #line 1 "src\\code\\poly\\poly.hpp" #line 5 "src\\code\\poly\\poly.hpp" namespace tifa_libs::math { template <class Pldt> class poly { Pldt p; public: using value_type = typename Pldt::value_type; using data_type = vec<value_type>; explicit constexpr poly(size_t sz = 1) : p(sz) {} explicit constexpr poly(std::initializer_list<value_type> v) : p(v) {} template <class T> explicit constexpr poly(vec<T> const &v) : p(v) {} constexpr friend std::istream &operator>>(std::istream &is, poly &poly) { for (auto &val : poly.p.d) is >> val; return is; } constexpr friend std::ostream &operator<<(std::ostream &os, const poly &poly) { if (!poly.size()) return os; for (size_t i = 1; i < poly.size(); ++i) os << poly[i - 1] << ' '; return os << poly.p.d.back(); } constexpr size_t size() const { return p.d.size(); } constexpr data_type &data() { return p.d; } constexpr data_type const &data() const { return p.d; } constexpr value_type &operator[](size_t x) { return p.d[x]; } constexpr value_type operator[](size_t x) const { return p.d[x]; } constexpr value_type operator()(value_type x) const { value_type ans = 0; for (size_t i = size() - 1; ~i; --i) ans = ans * x + p.d[i]; return ans; } template <class F> void apply_range(size_t l, size_t r, F f) { assert(l < r && r <= size()); for (size_t i = l; i < r; ++i) f(i, p.d[i]); } template <class F> void apply(F f) { apply_range(0, size(), f); } constexpr void resize(size_t size) { p.d.resize(size); } constexpr poly pre(size_t size) const { poly _ = *this; _.resize(size); return _; } constexpr void strip() { auto it = std::find_if(p.d.rbegin(), p.d.rend(), [](auto const &x) { return x != 0; }); p.d.resize(p.d.rend() - it); if (p.d.empty()) p.d.push_back(value_type(0)); } constexpr void reverse() { std::reverse(p.d.begin(), p.d.end()); } void conv(poly const &r, size_t ans_size) { p.conv(r.p, ans_size); } void conv(poly const &r) { p.conv(r.p); } constexpr poly operator-() const { poly ret = *this; ret.apply([]([[maybe_unused]] size_t i, auto &v) { v = -v; }); return ret; } friend poly operator+(poly p, value_type c) { p[0] += c; return p; } friend poly operator+(value_type c, poly const &p) { return p + c; } friend poly operator-(poly p, value_type c) { p[0] -= c; return p; } friend poly operator-(value_type c, poly const &p) { return p - c; } constexpr poly &operator*=(value_type c) { apply([&c]([[maybe_unused]] size_t i, auto &v) { v *= c; }); return *this; } constexpr friend poly operator*(poly p, value_type c) { return p *= c; } constexpr friend poly operator*(value_type c, poly p) { return p *= c; } constexpr poly &operator+=(poly const &r) { if (!r.size()) return *this; resize(std::max(size(), r.size())); apply_range(0, r.size(), [&r](size_t i, auto &v) { v += r[i]; }); return *this; } friend poly operator+(poly l, poly const &r) { return l += r; } constexpr poly &operator-=(poly const &r) { if (!r.size()) return *this; resize(std::max(size(), r.size())); apply_range(0, r.size(), [&r](size_t i, auto &v) { v -= r[i]; }); return *this; } friend poly operator-(poly l, poly const &r) { return l -= r; } poly &operator*=(poly const &r) { if (!r.size()) { resize(1); p.d[0] = 0; return *this; } conv(r); return *this; } friend poly operator*(poly l, poly const &r) { return l *= r; } }; } // namespace tifa_libs::math #line 5 "src\\code\\poly\\poly_deriv.hpp" namespace tifa_libs::math { template <class T> inline poly<T> poly_deriv(poly<T> const &p) { auto _ = p; for (size_t i = 1; i < _.size(); ++i) _[i - 1] = _[i] * i; _.data().back() = 0; return _; } } // namespace tifa_libs::math #line 1 "src\\code\\poly\\poly_int.hpp" #line 5 "src\\code\\poly\\poly_int.hpp" namespace tifa_libs::math { template <class T> inline poly<T> poly_int(poly<T> const &p) { using mint = typename T::value_type; auto _ = p; for (size_t i = _.size() - 1; i; --i) _[i] = _[i - 1] * mint(i).inv(); _[0] = 0; return _; } } // namespace tifa_libs::math #line 1 "src\\code\\poly\\poly_inv.hpp" #line 5 "src\\code\\poly\\poly_inv.hpp" namespace tifa_libs::math { template <class T> inline poly<T> poly_inv(poly<T> const &p, size_t n = 0) { assert(p[0] != 0); if (!n) n = p.size(); poly<T> a{p[0].inv()}; for (size_t i = 1; i < n; i *= 2) a = (a * 2 - (a * a * p).pre(i * 2)).pre(i * 2); return a.pre(n); } } // namespace tifa_libs::math #line 7 "src\\code\\poly\\poly_ln.hpp" namespace tifa_libs::math { template <class T> inline poly<T> poly_ln(poly<T> const &p, size_t n = 0) { assert(p[0] == 1); if (!n) n = p.size(); auto _ = poly_deriv(p).pre(n); _.conv(poly_inv(p, n)); return poly_int(_).pre(n); } } // namespace tifa_libs::math #line 5 "src\\code\\poly\\poly_exp.hpp" namespace tifa_libs::math { template <class T> inline poly<T> poly_exp(poly<T> const &p, size_t n = 0) { assert(p[0] == 0); if (!n) n = p.size(); poly<T> _ = p + 1, a{1}; for (size_t i = 1; i < n; i *= 2) a = (a * (_.pre(i * 2) - poly_ln(a, i * 2))).pre(i * 2); return a.pre(n); } } // namespace tifa_libs::math #line 7 "src\\code\\poly\\poly_ode.hpp" namespace tifa_libs::math { template <class T, class G, class DG> inline poly<T> poly_ode(G g, DG dg, typename T::value_type a, size_t n) { poly<T> f{a}; for (size_t i = 1; i < n; i *= 2) { poly<T> r = poly_exp(poly_int(-dg(f, i * 2))), h = poly_int(((g(f, i * 2) - (dg(f, i * 2) * f).pre(i * 2)) * r).pre(i * 2)); f = ((h + a) * poly_inv(r, i * 2)).pre(i * 2); } return f.pre(n); } } // namespace tifa_libs::math #line 1 "src\\code\\poly\\polydata_s.hpp" #line 1 "src\\code\\poly\\conv_naive.hpp" #line 5 "src\\code\\poly\\conv_naive.hpp" namespace tifa_libs::math { template <class T> inline vec<T> conv_naive(vec<T> const &l, vec<T> const &r, size_t ans_size) { size_t n = l.size(), m = r.size(); vec<T> ans(ans_size); if (n < m) for (size_t j = 0; j < m; ++j) for (size_t i = 0; i < n; ++i) { if (i + j >= ans_size) break; ans[i + j] += l[i] * r[j]; } else for (size_t i = 0; i < n; ++i) for (size_t j = 0; j < m; ++j) { if (i + j >= ans_size) break; ans[i + j] += l[i] * r[j]; } return ans; } template <class T> inline vec<T> conv_naive(vec<T> const &l, vec<T> const &r) { return conv_naive(l, r, l.size() + r.size() - 1); } } // namespace tifa_libs::math #line 1 "src\\code\\poly\\conv_ntt.hpp" #line 1 "src\\code\\poly\\ntt.hpp" #line 1 "src\\code\\bit\\bceil.hpp" #line 1 "src\\code\\bit\\cntl0.hpp" namespace tifa_libs::bit { // From GCC lib template <typename T> constexpr int cntl0(T x) { constexpr int nd = sizeof(T) * 8; if (x == 0) return nd; static_assert(nd <= 128); constexpr int nd_ull = sizeof(unsigned long long) * 8; constexpr int nd_ul = sizeof(unsigned long) * 8; constexpr int nd_u = sizeof(unsigned) * 8; if constexpr (nd <= nd_u) return __builtin_clz(x) - (nd_u - nd); else if constexpr (nd <= nd_ul) return __builtin_clzl(x) - (nd_ul - nd); else if constexpr (nd <= nd_ull) return __builtin_clzll(x) - (nd_ull - nd); else { unsigned long long hi = x >> nd_ull; if (hi != 0) return __builtin_clzll(hi) - ((2 * nd_ull) - nd); unsigned long long lo = x & (unsigned long long)(-1); return (nd - nd_ull) + __builtin_clzll(lo); } } } // namespace tifa_libs::bit #line 6 "src\\code\\bit\\bceil.hpp" namespace tifa_libs::bit { // From GCC lib template <typename T> constexpr T bceil(T x) { if (x == 0 || x == 1) return 1; constexpr int nd = sizeof(T) * 8; int sh = nd - cntl0((T)(x - 1u)); using U = decltype(x << 1); if constexpr (!std::is_same_v<U, T>) sh |= (sh & nd) << (sizeof(U) / sizeof(T) / 2); return (T)1u << sh; } } // namespace tifa_libs::bit #line 1 "src\\code\\math\\proot_u64.hpp" #line 1 "src\\code\\math\\pfactors.hpp" #line 1 "src\\code\\bit\\cntr0.hpp" namespace tifa_libs::bit { // From GCC lib template <typename T> constexpr int cntr0(T x) { constexpr int nd = sizeof(T) * 8; static_assert(nd <= 128); if (x == 0) return nd; constexpr int nd_ull = sizeof(unsigned long long) * 8; constexpr int nd_ul = sizeof(unsigned long) * 8; constexpr int nd_u = sizeof(unsigned) * 8; if constexpr (nd <= nd_u) return __builtin_ctz(x); else if constexpr (nd <= nd_ul) return __builtin_ctzl(x); else if constexpr (nd <= nd_ull) return __builtin_ctzll(x); else { unsigned long long lo = x & (unsigned long long)(-1); if (lo != 0) return __builtin_ctzll(lo); unsigned long long hi = x >> nd_ull; return __builtin_ctzll(hi) + nd_ull; } } } // namespace tifa_libs::bit #line 1 "src\\code\\rand\\gen.hpp" #line 5 "src\\code\\rand\\gen.hpp" namespace tifa_libs::rand { template <class Distri> class Gen { std::conditional_t<sizeof(typename Distri::result_type) <= 4, std::mt19937, std::mt19937_64> re; Distri dist; public: using random_engine = decltype(re); using distribution = Distri; using result_type = typename Distri::result_type; Gen() : re(std::random_device{}()), dist() {} Gen(result_type a, result_type b) : re(std::random_device{}()), dist(a, b) {} void set_range(result_type a, result_type b) { dist = Distri(a, b); } random_engine& rand_eng() { return re; } Distri& distrib() { return dist; } result_type operator()() { return dist(re); } }; } // namespace tifa_libs::rand #line 1 "src\\code\\math\\is_prime.hpp" #line 1 "src\\code\\math\\mul_mod_u.hpp" #line 1 "src\\code\\bit\\bwidth.hpp" #line 5 "src\\code\\bit\\bwidth.hpp" namespace tifa_libs::bit { // From GCC lib template <typename T> constexpr int bwidth(T x) { return (int)sizeof(T) * 8 - cntl0(x); } } // namespace tifa_libs::bit #line 6 "src\\code\\math\\mul_mod_u.hpp" namespace tifa_libs::math { constexpr u64 mul_mod_u(u64 a, u64 b, u64 mod) { if (bit::bwidth(a) + bit::bwidth(b) <= 64) return a * b % mod; else return (u64)((u128)a * b % mod); } } // namespace tifa_libs::math #line 1 "src\\code\\math\\qpow_mod.hpp" #line 5 "src\\code\\math\\qpow_mod.hpp" namespace tifa_libs::math { constexpr u64 qpow_mod(u64 a, u64 b, u64 mod) { u64 res(1); for (a %= mod; b; b >>= 1, a = mul_mod_u(a, a, mod)) if (b & 1) res = mul_mod_u(res, a, mod); return res; } } // namespace tifa_libs::math #line 7 "src\\code\\math\\is_prime.hpp" namespace tifa_libs::math { constexpr bool is_prime(u64 n) { if (n <= 2) return n == 2; if (~n & 1) return false; if (n < 8) return true; constexpr u64 bases[12] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}; u64 d = (n - 1) >> bit::cntr0(n - 1); for (u64 i : bases) { if (n == i) return true; u64 t = d, y = qpow_mod(i, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = mul_mod_u(y, y, n); t <<= 1; } if (y != n - 1 && (~t & 1)) return false; } return true; } } // namespace tifa_libs::math #line 8 "src\\code\\math\\pfactors.hpp" namespace tifa_libs::math { namespace pfactors_detail__ { class PollardRho { rand::Gen<std::uniform_int_distribution<u64>> e; u64 rho(u64 n) { e.set_range(2, n - 1); auto f = [n, r = e()](u64 x) { return (mul_mod_u(x, x, n) + r) % n; }; u64 g = 1, x = 0, y = e(), yy = 0; const u32 LIM = 128; for (u64 r = 1, q = 1; g == 1; r *= 2) { x = y; for (u64 i = 0; i < r; ++i) y = f(y); for (u64 k = 0; g == 1 && k < r; k += LIM) { yy = y; for (u64 i = 0; i < LIM && i < r - k; ++i) q = mul_mod_u(q, (x + (n - (y = f(y)))) % n, n); g = std::gcd(q, n); } } if (g == n) do { g = std::gcd((x + (n - (yy = f(yy)))) % n, n); } while (g == 1); return g == n ? rho(n) : g; } public: explicit PollardRho() : e() {} void operator()(u64 n, std::map<u64, u32> &ans) { if (n < 2) return; if (is_prime(n)) { ++ans[n]; return; } auto g = rho(n); (*this)(n / g, ans); (*this)(g, ans); } }; } // namespace pfactors_detail__ inline std::map<u64, u32> pfactors(u64 n) { std::map<u64, u32> ans; if (n < 2) return ans; if (~n & 1) n >>= (ans[2] = (u32)bit::cntr0(n)); using pfactors_detail__::PollardRho; PollardRho()(n, ans); return ans; } } // namespace tifa_libs::math #line 1 "src\\code\\math\\proot_u32.hpp" #line 1 "src\\code\\math\\isqrt.hpp" #line 6 "src\\code\\math\\isqrt.hpp" namespace tifa_libs::math { constexpr u32 isqrt(u64 x) { int c = (bit::bwidth(x) - 1) / 2, sh = 31 - c; u32 u = [](u64 x) { constexpr uint8_t TAB[192] = {128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144, 145, 146, 147, 148, 149, 150, 151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, 160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186, 187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194, 195, 196, 196, 197, 198, 198, 199, 200, 200, 201, 201, 202, 203, 203, 204, 205, 205, 206, 206, 207, 208, 208, 209, 210, 210, 211, 211, 212, 213, 213, 214, 214, 215, 216, 216, 217, 217, 218, 219, 219, 220, 220, 221, 221, 222, 223, 223, 224, 224, 225, 225, 226, 227, 227, 228, 228, 229, 229, 230, 230, 231, 232, 232, 233, 233, 234, 234, 235, 235, 236, 237, 237, 238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255, 255}; u32 u = TAB[(x >> 56) - 64]; u = (u << 7) + (u32)(x >> 41) / u; return (u << 15) + (u32)((x >> 17) / u); }(x << 2 * sh); u >>= sh; u -= (u64)u * u > x; return u; } } // namespace tifa_libs::math #line 7 "src\\code\\math\\proot_u32.hpp" namespace tifa_libs::math { constexpr u32 proot_u32(u32 m) { if (m == 2) return 1; if (m == 3 || m == 5) return 2; if (m == 104857601 || m == 167772161 || m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353 || m == 1004535809) return 3; u32 divs[20] = {2}; u32 cnt = 1, x = (m - 1) / 2; x >>= bit::cntr0(x); for (u32 i = 3, ed_ = isqrt(x); i <= ed_; i += 2) if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) x /= i; } if (x > 1) divs[cnt++] = x; for (u32 g = 2;; ++g) { bool ok = true; for (u32 i = 0; i < cnt; ++i) if (qpow_mod(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } if (ok) return g; } } } // namespace tifa_libs::math #line 7 "src\\code\\math\\proot_u64.hpp" namespace tifa_libs::math { inline u64 proot_u64(u64 m) { if (m <= (u32)(-1)) return proot_u32((u32)m); u64 r = 1; auto pf = pfactors(m - 1); while (true) { bool ok = 1; for (auto [q, k] : pf) if (qpow_mod(r, (m - 1) / q, m) == 1) { ok = 0; break; } if (ok) break; ++r; } return r; } } // namespace tifa_libs::math #line 1 "src\\code\\math\\qpow.hpp" #line 5 "src\\code\\math\\qpow.hpp" namespace tifa_libs::math { template <class T> constexpr T qpow(T a, u64 b) { T res(1); for (; b; b >>= 1, a *= a) if (b & 1) res *= a; return res; } } // namespace tifa_libs::math #line 8 "src\\code\\poly\\ntt.hpp" namespace tifa_libs::math { template <class mint> struct NTT { static constexpr u64 MOD = mint::mod(); static_assert((MOD & 3) == 1, "MOD must be prime with 4k+1"); NTT() : root() {} size_t size() const { return root.size(); } void bzr(size_t len) { size_t n = bit::bceil(len); assert((MOD - 1) % n == 0); if (n == size()) return; root.resize(n); root[0] = 1; mint w = qpow(G, (MOD - 1) / n); for (size_t i = 1; i < n; ++i) root[i] = root[i - 1] * w; } void dif(vec<mint> &f) const { size_t n = size(); assert(f.size() <= n); f.resize(n); for (size_t i = n / 2, d = 1; i; i /= 2, d *= 2) for (size_t j = 0; j < n; j += i * 2) { auto w = root.begin(); mint u, t; for (size_t k = 0; k < i; ++k, w += d) { f[j | k] = (u = f[j | k]) + (t = f[i | j | k]); f[i | j | k] = (u - t) * (*w); } } } void dit(vec<mint> &f) const { size_t n = size(); assert(f.size() <= n); f.resize(n); for (size_t i = 1, d = n / 2; d; i *= 2, d /= 2) for (size_t j = 0; j < n; j += i * 2) { auto w = root.begin(); mint t; for (size_t k = 0; k < i; ++k, w += d) { f[i | j | k] = f[j | k] - (t = f[i | j | k] * (*w)); f[j | k] += t; } } std::reverse(f.begin() + 1, f.end()); mint t = mint(n).inv(); for (size_t i = 0; i < n; ++i) f[i] *= t; } private: const mint G = proot_u64(MOD); vec<mint> root; }; } // namespace tifa_libs::math #line 6 "src\\code\\poly\\conv_ntt.hpp" namespace tifa_libs::math { template <class mint> inline vec<mint> conv_ntt(vec<mint> l, vec<mint> r, size_t ans_size) { static NTT<mint> ntt; ntt.bzr(std::min(l.size() + r.size() - 1, ans_size)); ntt.dif(l); ntt.dif(r); for (size_t i = 0; i < ntt.size(); ++i) l[i] *= r[i]; ntt.dit(l); l.resize(ans_size); return l; } template <class mint> inline vec<mint> conv_ntt(vec<mint> const &l, vec<mint> const &r) { return conv_ntt(l, r, l.size() + r.size() - 1); } template <class mint> inline vec<mint> conv_ntt(vec<u64> const &l, vec<u64> const &r, size_t ans_size) { vec<mint> l_, r_; l_.reserve(l.size()); r_.reserve(r.size()); for (auto i : l) l_.push_back(i); for (auto i : r) r_.push_back(i); return conv_ntt(l_, r_, ans_size); } template <class mint> inline vec<mint> conv_ntt(vec<u64> const &l, vec<u64> const &r) { return conv_ntt(l, r, l.size() + r.size() - 1); } } // namespace tifa_libs::math #line 7 "src\\code\\poly\\polydata_s.hpp" namespace tifa_libs::math { template <class mint> struct polydata_s { static constexpr u64 MOD = mint::mod(); static_assert(MOD > 1 && (MOD & 3) == 1, "MOD must be prime with 4k+1"); using value_type = mint; vec<mint> d; explicit constexpr polydata_s(size_t sz = 1) : d(std::max((size_t)1, sz)) {} explicit constexpr polydata_s(std::initializer_list<mint> v) : d(v) {} explicit constexpr polydata_s(vec<mint> const &v) : d(v) {} void conv(polydata_s const &r, size_t ans_size) { d = ans_size < 32 ? conv_naive(d, r.d, ans_size) : conv_ntt(d, r.d, ans_size); } void conv(polydata_s const &r) { conv(r, d.size() + r.d.size() - 1); } }; } // namespace tifa_libs::math #line 6 "src\\test_cpverifier\\yukicoder\\0963.0.test.cpp" using mint = tifa_libs::math::mint_s30<1012924417>; using pldt_t = tifa_libs::math::polydata_s<mint>; using poly_t = tifa_libs::math::poly<pldt_t>; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); size_t n; std::cin >> n; auto g = [](poly_t const& f, size_t n) { return ((f * f + 1) * mint(2).inv()).pre(n); }; auto dg = [](poly_t const& f, size_t n) { return f.pre(n); }; mint ans = tifa_libs::math::poly_ode<pldt_t>(g, dg, 1, n + 1)[n] * 2; for (size_t i = 2; i <= n; ++i) ans *= i; std::cout << ans; return 0; }