結果
| 問題 |
No.1907 DETERMINATION
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-10-15 11:52:55 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,173 ms / 4,000 ms |
| コード長 | 5,755 bytes |
| コンパイル時間 | 2,334 ms |
| コンパイル使用メモリ | 208,816 KB |
| 最終ジャッジ日時 | 2025-02-17 07:53:25 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 63 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
constexpr int MOD = 998244353;
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
template <typename T>
vector<T> characteristic_polynomial(vector<vector<T>> A) {
int n = A.size();
for (int j = 0; j < n - 2; j++) {
for (int i = j + 2; i < n; i++) {
if (A[i][j] != 0) {
swap(A[j + 1], A[i]);
for (int k = 0; k < n; k++) swap(A[k][j + 1], A[k][i]);
break;
}
}
if (A[j + 1][j] != 0) {
T inv = A[j + 1][j].inverse();
for (int i = j + 2; i < n; i++) {
T c = A[i][j] * inv;
for (int k = j; k < n; k++) A[i][k] -= A[j + 1][k] * c;
for (int k = 0; k < n; k++) A[k][j + 1] += A[k][i] * c;
}
}
}
vector<vector<T>> p(n + 1);
p[0] = {1};
for (int i = 0; i < n; i++) {
p[i + 1].assign(i + 2, 0);
for (int j = 0; j <= i; j++) {
p[i + 1][j + 1] += p[i][j];
p[i + 1][j] -= p[i][j] * A[i][i];
}
T c = 1;
for (int k = 1; k <= i; k++) {
c *= -A[i + 1 - k][i - k];
T x = c * (k & 1 ? A[i - k][i] : -A[i - k][i]);
for (int j = 0; j <= i - k; j++) p[i + 1][j] += p[i - k][j] * x;
}
}
return p[n];
}
template <typename T>
vector<T> linear_funcion_matrix_determinant(vector<vector<T>> A0, vector<vector<T>> A1) {
int n = A0.size();
T tmp = 1;
int deg = 0;
for (int j = 0; j < n; j++) {
while (deg <= n) {
for (int i = j - 1; i >= 0; i--) {
T y = A1[i][j];
for (int k = 0; k < n; k++) {
A0[k][j] -= A0[k][i] * y;
A1[k][j] -= A1[k][i] * y;
}
}
for (int i = j + 1; i < n; i++) {
if (A1[i][j] != 0) {
swap(A0[j], A0[i]);
swap(A1[j], A1[i]);
tmp *= -1;
break;
}
}
if (A1[j][j] != 0) break;
deg++;
for (int i = 0; i < n; i++) {
A1[i][j] = A0[i][j];
A0[i][j] = 0;
}
}
if (deg > n) return vector<T>(n + 1, 0);
T x = A1[j][j].inverse();
tmp *= A1[j][j];
for (int k = 0; k < n; k++) {
A0[j][k] *= x;
A1[j][k] *= x;
}
for (int i = 0; i < n; i++) {
if (i != j) {
T y = A1[i][j];
for (int k = 0; k < n; k++) {
A0[i][k] -= A0[j][k] * y;
A1[i][k] -= A1[j][k] * y;
}
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) A0[i][j] *= -1;
}
auto f = characteristic_polynomial(A0);
vector<T> p(n + 1, 0);
for (int i = deg; i <= n; i++) p[i - deg] += f[i] * tmp;
return p;
}
int main() {
int N;
cin >> N;
vector A0(N, vector(N, mint(0))), A1(N, vector(N, mint(0)));
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) cin >> A0[i][j];
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) cin >> A1[i][j];
}
auto p = linear_funcion_matrix_determinant(A0, A1);
for (int i = 0; i <= N; i++) cout << p[i] << '\n';
}