結果

問題 No.2513 Power Eraser
ユーザー SSRS
提出日時 2023-10-20 22:07:55
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 3,696 bytes
コンパイル時間 4,119 ms
コンパイル使用メモリ 242,664 KB
最終ジャッジ日時 2025-02-17 09:34:29
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 12 WA * 9 TLE * 14 -- * 4
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <atcoder/convolution>
using namespace std;
const long long MOD = 998244353;
long long modpow(long long a, long long b){
long long ans = 1;
while (b > 0){
if (b % 2 == 1){
ans *= a;
ans %= MOD;
}
a *= a;
a %= MOD;
b /= 2;
}
return ans;
}
long long modinv(long long a){
return modpow(a, MOD - 2);
}
vector<long long> diff(vector<long long> A){
int N = A.size();
vector<long long> B(N - 1);
for (int i = 1; i < N; i++){
B[i - 1] = A[i] * i % MOD;
}
return B;
}
vector<long long> polynomial_inverse(vector<long long> f){
int N = f.size();
vector<long long> ans(1);
ans[0] = modinv(f[0]);
for (int i = 1; i < N * 2; i *= 2){
vector<long long> ans2 = ans;
ans2.resize(i * 4);
int N2 = min(N, i * 2);
vector<long long> f2(i * 4, 0);
for (int j = 0; j < N2; j++){
f2[j] = f[j];
}
ans2 = atcoder::convolution(ans2, ans2);
ans2.resize(i * 2);
ans2 = atcoder::convolution(ans2, f2);
ans2.resize(i * 2);
for (int j = 0; j < i; j++){
ans2[j] = MOD - ans2[j] + ans[j] * 2;
ans2[j] %= MOD;
}
swap(ans, ans2);
}
ans.resize(N);
return ans;
}
vector<long long> polynomial_quotient(vector<long long> f, vector<long long> g){
int N = f.size(), M = g.size();
if (N < M){
return {0};
}
reverse(g.begin(), g.end());
g.resize(N - M + 1);
vector<long long> t = polynomial_inverse(g);
reverse(f.begin(), f.end());
vector<long long> q = atcoder::convolution(f, t);
q.resize(N - M + 1);
reverse(q.begin(), q.end());
return q;
}
vector<long long> polynomial_remainder(vector<long long> f, vector<long long> g){
int N = f.size();
int M = g.size();
if (M <= 100){
for (int i = N - M; i >= 0; i--){
long long q = f[i + M - 1] * modinv(g[M - 1]) % MOD;
for (int j = 0; j < M; j++){
f[i + j] += MOD - q * g[j] % MOD;
f[i + j] %= MOD;
}
f.pop_back();
}
return f;
} else {
vector<long long> q = polynomial_quotient(f, g);
vector<long long> b = atcoder::convolution(g, q);
for (int i = 0; i < N; i++){
f[i] += MOD - b[i];
f[i] %= MOD;
}
f.resize(M - 1);
return f;
}
}
vector<long long> multipoint_evaluation(vector<long long> &f, vector<long long> x){
int M = x.size();
int M2 = 1;
while (M2 < M){
M2 *= 2;
}
vector<vector<long long>> g(M2 * 2 - 1, {1});
for (int i = 0; i < M; i++){
g[M2 - 1 + i] = vector<long long>{MOD - x[i], 1};
}
for (int i = M2 - 2; i >= 0; i--){
g[i] = atcoder::convolution(g[i * 2 + 1], g[i * 2 + 2]);
}
g[0] = polynomial_remainder(f, g[0]);
for (int i = 1; i < M2 * 2 - 1; i++){
g[i] = polynomial_remainder(g[(i - 1) / 2], g[i]);
}
vector<long long> ans(M);
for (int i = 0; i < M; i++){
ans[i] = g[M2 - 1 + i][0];
}
return ans;
}
int main(){
int N;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++){
cin >> A[i];
}
long long ans = 1;
auto dfs = [&](auto dfs, int L, int R){
if (R - L == 1){
return;
}
int m = (L + R) / 2;
vector<vector<long long>> P(m - L);
for (int i = 0; i < m - L; i++){
P[i] = {MOD - A[L + i], 1};
}
for (int i = m - L - 1; i >= 1; i--){
P[i / 2] = atcoder::convolution(P[i / 2], P[i]);
P.pop_back();
}
vector<long long> f = P[0];
vector<long long> x(R - m);
for (int i = 0; i < R - m; i++){
x[i] = A[m + i];
}
vector<long long> y = multipoint_evaluation(f, x);
for (int i = 0; i < R - m; i++){
ans *= y[i];
ans %= MOD;
}
dfs(dfs, L, m);
dfs(dfs, m, R);
};
dfs(dfs, 0, N);
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0