結果

問題 No.2509 Beam Shateki
ユーザー nono00
提出日時 2023-10-20 22:10:43
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 7,340 bytes
コンパイル時間 3,525 ms
コンパイル使用メモリ 265,664 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-20 19:17:17
合計ジャッジ時間 5,412 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 50 WA * 11
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <initializer_list>
#include <vector>
namespace nono {
template <typename T>
class Matrix {
public:
Matrix() = default;
Matrix(int row, int column): row_(row), column_(column), data_(row, std::vector<T>(column)) {}
Matrix(int row, int column, T elem): row_(row), column_(column), data_(row, std::vector<T>(column, elem)) {}
explicit Matrix(const std::vector<std::vector<T>>& data)
: row_(data.size()),
column_(data.front().size()),
data_(data) {
for (int i = 0; i < row_; i++) {}
}
Matrix(std::initializer_list<std::vector<T>> init): data_(init.begin(), init.end()) {
row_ = data_.size();
column_ = data_.front().size();
for (int i = 0; i < row_; i++) {}
}
const std::vector<T>& operator[](const int pos) const {
return data_[pos];
}
std::vector<T>& operator[](const int pos) {
return data_[pos];
}
Matrix& operator+=(const T rhs) {
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
data_[i][j] += rhs;
}
}
return *this;
}
Matrix& operator-=(const T rhs) {
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
data_[i][j] -= rhs;
}
}
return *this;
}
Matrix& operator*=(const T rhs) {
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
data_[i][j] *= rhs;
}
}
return *this;
}
Matrix& operator/=(const T rhs) {
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
data_[i][j] /= rhs;
}
}
return *this;
}
friend Matrix operator+(const Matrix& lhs, const T rhs) {
return Matrix(lhs) += rhs;
}
friend Matrix operator+(const T lhs, const Matrix& rhs) {
return Matrix(rhs) += lhs;
}
friend Matrix operator-(const Matrix& lhs, const T rhs) {
return Matrix(lhs) -= rhs;
}
friend Matrix operator-(const T lhs, const Matrix& rhs) {
return Matrix(rhs) -= lhs;
}
friend Matrix operator*(const Matrix& lhs, const T rhs) {
return Matrix(lhs) *= rhs;
}
friend Matrix operator*(const T lhs, const Matrix& rhs) {
return Matrix(rhs) *= lhs;
}
friend Matrix operator/(const Matrix& lhs, const T rhs) {
return Matrix(lhs) /= rhs;
}
friend Matrix operator/(const T lhs, const Matrix& rhs) {
return Matrix(rhs) /= lhs;
}
Matrix& operator+=(const Matrix& rhs) {
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
data_[i][j] += rhs.data_[i][j];
}
}
return *this;
}
Matrix& operator-=(const Matrix& rhs) {
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
data_[i][j] -= rhs.data_[i][j];
}
}
return *this;
}
Matrix& operator*=(const Matrix& rhs) {
std::vector<std::vector<T>> mat(row_, std::vector<T>(rhs.column_));
for (int i = 0; i < row_; i++) {
for (int k = 0; k < column_; k++) {
for (int j = 0; j < rhs.column_; j++) {
mat[i][j] += data_[i][k] * rhs.data_[k][j];
}
}
}
data_ = std::move(mat);
column_ = rhs.column_;
return *this;
}
friend Matrix operator+(const Matrix& lhs, const Matrix& rhs) {
return Matrix(lhs) += rhs;
}
friend Matrix operator-(const Matrix& lhs, const Matrix& rhs) {
return Matrix(lhs) -= rhs;
}
friend Matrix operator*(const Matrix& lhs, const Matrix& rhs) {
return Matrix(lhs) *= rhs;
}
[[nodiscard]] Matrix pow(long long exp) const {
Matrix result(row_, column_);
Matrix base(*this);
for (int i = 0; i < row_; i++) {
result[i][i] = static_cast<T>(1);
}
while (exp > 0) {
if (exp & 1) {
result *= base;
}
base *= base;
exp >>= 1;
}
return result;
}
[[nodiscard]] Matrix rotate() {
std::vector<std::vector<T>> result(column_, std::vector<T>(row_));
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
result[j][row_ - i - 1] = data_[i][j];
}
}
return Matrix(result);
}
[[nodiscard]] Matrix transpose() {
std::vector<std::vector<T>> result(column_, std::vector<T>(row_));
for (int i = 0; i < row_; i++) {
for (int j = 0; j < column_; j++) {
result[j][i] = data_[i][j];
}
}
return Matrix(result);
}
int row() {
return row_;
}
int column() {
return column_;
}
private:
int row_, column_;
std::vector<std::vector<T>> data_;
};
} // namespace nono
namespace nono {
struct Init {};
void solve([[maybe_unused]] const Init& init) {
int h, w;
std::cin >> h >> w;
Matrix<int> grid(h, w);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
std::cin >> grid[i][j];
}
}
int ans = 0;
for (int a = 0; a < 2; a++) {
for (int b = 0; b < 2; b++) {
int r = grid.row();
int c = grid.column();
std::vector<int> row(r);
std::vector<int> naname(r + c - 1);
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
row[i] += grid[i][j];
naname[i + j] += grid[i][j];
}
}
for (int k = 0; k + 1 < r + c; k++) {
int i = std::max(k - c + 1, 0);
int j = std::min(k, c - 1);
ans = std::max(ans, row[i] + naname[i + j] - grid[i][j]);
}
grid = grid.rotate();
}
auto temp = grid;
int r = grid.row();
int c = grid.column();
for (int i = 0; i < r; i++) {
for (int j = 0; j < c; j++) {
grid[i][j] = temp[i][c - j - 1];
}
}
}
std::vector<int> row(h);
std::vector<int> column(w);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
row[i] += grid[i][j];
column[j] += grid[i][j];
}
}
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
ans = std::max(ans, row[i] + column[j] - grid[i][j]);
}
}
std::ranges::sort(row, std::greater());
std::ranges::sort(column, std::greater());
if (h > 1) {
ans = std::max(ans, row[0] + row[1]);
} else {
ans = std::max(ans, row[0]);
}
if (w > 1) {
ans = std::max(ans, column[0] + column[1]);
} else {
ans = std::max(ans, column[0]);
}
std::cout << ans << std::endl;
}
} // namespace nono
int main() {
std::cin.tie(0)->sync_with_stdio(0);
std::cout << std::fixed << std::setprecision(16);
int t = 1;
nono::Init init;
while (t--) nono::solve(init);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0