結果
問題 | No.2513 Power Eraser |
ユーザー | chineristAC |
提出日時 | 2023-10-20 23:03:51 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,588 ms / 6,000 ms |
コード長 | 14,566 bytes |
コンパイル時間 | 5,173 ms |
コンパイル使用メモリ | 282,512 KB |
実行使用メモリ | 16,348 KB |
最終ジャッジ日時 | 2024-09-20 21:51:03 |
合計ジャッジ時間 | 82,957 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 6 ms
5,376 KB |
testcase_04 | AC | 36 ms
5,376 KB |
testcase_05 | AC | 9 ms
5,376 KB |
testcase_06 | AC | 57 ms
5,376 KB |
testcase_07 | AC | 25 ms
5,376 KB |
testcase_08 | AC | 45 ms
5,376 KB |
testcase_09 | AC | 70 ms
5,376 KB |
testcase_10 | AC | 43 ms
5,376 KB |
testcase_11 | AC | 8 ms
5,376 KB |
testcase_12 | AC | 33 ms
5,376 KB |
testcase_13 | AC | 844 ms
8,424 KB |
testcase_14 | AC | 1,806 ms
13,232 KB |
testcase_15 | AC | 1,974 ms
13,988 KB |
testcase_16 | AC | 1,109 ms
9,540 KB |
testcase_17 | AC | 1,400 ms
11,128 KB |
testcase_18 | AC | 1,814 ms
13,076 KB |
testcase_19 | AC | 2,581 ms
16,324 KB |
testcase_20 | AC | 946 ms
8,868 KB |
testcase_21 | AC | 1,946 ms
13,816 KB |
testcase_22 | AC | 1,908 ms
13,804 KB |
testcase_23 | AC | 2,548 ms
16,224 KB |
testcase_24 | AC | 2,549 ms
16,348 KB |
testcase_25 | AC | 2,588 ms
16,220 KB |
testcase_26 | AC | 2,553 ms
16,224 KB |
testcase_27 | AC | 2,541 ms
16,224 KB |
testcase_28 | AC | 2,558 ms
16,276 KB |
testcase_29 | AC | 2,569 ms
16,224 KB |
testcase_30 | AC | 2,587 ms
16,228 KB |
testcase_31 | AC | 2,567 ms
16,348 KB |
testcase_32 | AC | 2,544 ms
16,224 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2,567 ms
16,224 KB |
testcase_36 | AC | 2,561 ms
16,328 KB |
7_evil_case_1.txt | AC | 5,846 ms
30,296 KB |
7_evil_case_2.txt | AC | 5,859 ms
30,172 KB |
7_evil_case_3.txt | AC | 5,906 ms
30,172 KB |
7_evil_case_4.txt | AC | 5,943 ms
30,300 KB |
7_evil_case_5.txt | AC | 5,938 ms
30,300 KB |
ソースコード
//https://yukicoder.me/submissions/650286 #include <bits/stdc++.h> #include <unistd.h> using namespace std; #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; #endif using ll = long long; using ld = long double; using ull = long long; #define REP3(i, m, n) for (int i = (m); (i) < int(n); ++ (i)) #define ALL(x) begin(x), end(x) #define all(s) (s).begin(),(s).end() #define rep2(i, m, n) for (int i = (m); i < (n); ++i) #define rep(i, n) rep2(i, 0, n) #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) #define rever(vec) reverse(vec.begin(), vec.end()) #define sor(vec) sort(vec.begin(), vec.end()) #define fi first #define se second //#define P pair<ll,ll> #define REP(i, n) for (int i = 0; i < (n); ++i) #define in scanner.read_int() const ll mod = 998244353; //const ll mod = 1000000007; const ll inf = 2000000000000000000ll; static const long double pi = 3.141592653589793; template<class T>void vcin(vector<ll> &n){for(int i=0;i<int(n.size());i++) cin>>n[i];} template<class T>void vcout(vector<T> &n){for(int i=0;i<int(n.size());i++){cout<<n[i]<<" ";}cout<<endl;} void YesNo(bool a){if(a){cout<<"Yes"<<endl;}else{cout<<"No"<<endl;}} void YESNO(bool a){if(a){cout<<"YES"<<endl;}else{cout<<"NO"<<endl;}} template<class T,class U> void chmax(T& t,const U& u){if(t<u) t=u;} template<class T,class U> void chmin(T& t,const U& u){if(t>u) t=u;} template<class T> void ifmin(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}} template<class T> void ifmax(T t,T u){if(t>u){cout<<-1<<endl;}else{cout<<t<<endl;}} template<typename T,typename ...Args>auto make_vector(T x,int arg,Args ...args){if constexpr(sizeof...(args)==0)return vector<T>(arg,x);else return vector(arg,make_vector<T>(x,args...));} ll modPow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; } void gbjsmzmfuuvdf(){ ios::sync_with_stdio(false); std::cin.tie(nullptr); cout<< fixed << setprecision(20); } class Scanner { vector<char> buffer; ssize_t n_written; ssize_t n_read; public: Scanner(): buffer(1024*1024) { do_read(); } int64_t read_int() { int64_t ret = 0, sgn = 1; int ch = current_char(); while (isspace(ch)) { ch = next_char(); } if (ch == '-') { sgn = -1; ch = next_char(); } for (; isdigit(ch); ch = next_char()) ret = (ret * 10) + (ch - '0'); return sgn * ret; } private: void do_read() { ssize_t r = read(0, &buffer[0], buffer.size()); if (r < 0) { throw runtime_error(strerror(errno)); } n_written = r; n_read = 0; } inline int next_char() { ++n_read; if (n_read == n_written) { do_read(); } return current_char(); } inline int current_char() { return (n_read == n_written) ? EOF : buffer[n_read]; } }; enum Mode { FAST = 1, NAIVE = -1, }; template <class T, Mode mode = FAST> struct FormalPowerSeries : std::vector<T> { using std::vector<T>::vector; using std::vector<T>::size; using std::vector<T>::resize; using F = FormalPowerSeries; F &operator+=(const F &g){ for(int i=0;i<int(min((*this).size(),g.size()));i++){ (*this)[i]+=g[i]; } return *this; } F &operator+=(const T &t){ assert(int((*this).size())); (*this)[0]+=t; return *this; } F &operator-=(const F &g) { for(int i=0;i<int(min((*this).size(),g.size()));i++){ (*this)[i]-=g[i]; } return *this; } F &operator-=(const T &t){ assert(int((*this).size())); (*this)[0]-=t; return *this; } F &operator*=(const T &g) { for(int i=0;i<int((*this).size());i++){ (*this)[i]*=g; } return *this; } F &operator/=(const T &g) { T div=g.inv(); for(int i=0;i<int((*this).size());i++){ (*this)[i]*=div; } return *this; } F &operator<<=(const int d) { int n=(*this).size(); (*this).insert((*this).begin(),d,0); (*this).resize(n); return *this; } F &operator>>=(const int d) { int n=(*this).size(); (*this).erase((*this).begin(),(*this).begin()+min(n, d)); (*this).resize(n); return *this; } F &operator=(const std::vector<T> &v) { int n = (*this).size(); for(int i = 0; i < n; ++i) (*this)[i] = v[i]; return *this; } F operator-() const { F ret = *this; return ret * -1; } F &operator*=(const F &g) { if(mode==FAST) { int n=(*this).size(); auto tmp=atcoder::convolution(*this,g); int f=tmp.size(); (*this).resize(f); *this=tmp; return *this; } else{ int n = (*this).size(), m = g.size(); for(int i = n - 1; i >= 0; --i) { (*this)[i] *= g[0]; for(int j = 1; j < std::min(i + 1, m); j++) (*this)[i] += (*this)[i - j] * g[j]; } return *this; } } F &operator/=(const F &g) { if(mode == FAST){ int n = (*this).size(); (*this) = atcoder::convolution(*this, g.inv()); return *this; } else{ assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); for(int i = 0; i < n; ++i) { for(int j = 1; j < std::min(i + 1, m); ++j) (*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } } F &operator%=(const F &g) { return *this-=*this/g*g; } F operator*(const T &g) const { return F(*this)*=g;} F operator-(const T &g) const { return F(*this)-=g;} F operator*(const F &g) const { return F(*this)*=g;} F operator-(const F &g) const { return F(*this)-=g;} F operator+(const F &g) const { return F(*this)+=g;} F operator/(const F &g) const { return F(*this)/=g;} F operator%(const F &g) const { return F(*this)%=g;} F operator<<(const int d) const { return F(*this)<<=d;} F operator>>(const int d) const { return F(*this)>>=d;} void onemul(const int d,const T c){ int n=(*this).size(); for(int i=n-d-1;i>=0;i--){ (*this)[i+d]+=(*this)[i]*c; } } void onediv(const int d,const T c){ int n=(*this).size(); for(int i=0;i<n-d;i++){ (*this)[i+d]-=(*this)[i]*c; } } T eval(const T &t) const { int n = (*this).size(); T res = 0, tmp = 1; for(int i = 0; i < n; ++i){ res += (*this)[i] * tmp, tmp *= t; } return res; } F inv(int deg = -1) const { int n = (*this).size(); assert(mode == FAST and n and (*this)[0] != 0); if(deg == -1) deg = n; assert(deg > 0); F res{(*this)[0].inv()}; while(int(res.size()) < deg) { int m = res.size(); F f((*this).begin(), (*this).begin() + std::min(n, m * 2)), r(res); f.resize(m * 2), atcoder::internal::butterfly(f); r.resize(m * 2), atcoder::internal::butterfly(r); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(m * 2), atcoder::internal::butterfly(f); for(int i = 0; i < m * 2; ++i) f[i] *= r[i]; atcoder::internal::butterfly_inv(f); T iz = T(m * 2).inv(); iz *= -iz; for(int i = 0; i < m; ++i) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } res.resize(deg); return res; } F &diff_inplace() { int n = (*this).size(); for(int i = 1; i < n; ++i) (*this)[i - 1] = (*this)[i] * i; (*this)[n - 1] = 0; return *this; } F diff() const { F(*this).diff_inplace();} F &integral_inplace() { int n = (*this).size(), mod = T::mod(); std::vector<T> inv(n); { inv[1] = 1; for(int i = 2; i < n; ++i) inv[i] = T(mod) - inv[mod % i] * (mod / i); } for(int i = n - 2; i >= 0; --i) (*this)[i + 1] = (*this)[i] * inv[i + 1]; (*this)[0] = 0; return *this; } F integral() const { return F(*this).integral_inplace(); } F &log_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 1); F f_inv = (*this).inv(); (*this).diff_inplace(); (*this) *= f_inv; (*this).resize(n); (*this).integral_inplace(); return *this; } F log() const { return F(*this).log_inplace(); } F &deriv_inplace() { int n = (*this).size(); assert(n); for(int i = 2; i < n; ++i) (*this)[i] *= i; (*this).erase((*this).begin()); (*this).push_back(0); return *this; } F deriv() const { return F(*this).deriv_inplace(); } F &exp_inplace() { int n = (*this).size(); assert(n and (*this)[0] == 0); F g{1}; (*this)[0] = 1; F h_drv((*this).deriv()); for(int m = 1; m < n; m *= 2) { F f((*this).begin(), (*this).begin() + m); f.resize(2 * m), atcoder::internal::butterfly(f); auto mult_f = [&](F &p) { p.resize(2 * m); atcoder::internal::butterfly(p); for(int i = 0; i < 2 * m; ++i) p[i] *= f[i]; atcoder::internal::butterfly_inv(p); p /= 2 * m; }; if(m > 1) { F g_(g); g_.resize(2 * m), atcoder::internal::butterfly(g_); for(int i = 0; i < 2 * m; ++i) g_[i] *= g_[i] * f[i]; atcoder::internal::butterfly_inv(g_); T iz = T(-2 * m).inv(); g_ *= iz; g.insert(g.end(), g_.begin() + m / 2, g_.begin() + m); } F t((*this).begin(), (*this).begin() + m); t.deriv_inplace(); { F r{h_drv.begin(), h_drv.begin() + m - 1}; mult_f(r); for(int i = 0; i < m; ++i) t[i] -= r[i] + r[m + i]; } t.insert(t.begin(), t.back()); t.pop_back(); t *= g; F v((*this).begin() + m, (*this).begin() + std::min(n, 2 * m)); v.resize(m); t.insert(t.begin(), m - 1, 0); t.push_back(0); t.integral_inplace(); for(int i = 0; i < m; ++i) v[i] -= t[m + i]; mult_f(v); for(int i = 0; i < std::min(n - m, m); ++i) (*this)[m + i] = v[i]; } return *this; } F exp() const { return F(*this).exp_inplace(); } F &pow_inplace(long long k) { int n = (*this).size(), l = 0; assert(k >= 0); if(!k){ for(int i = 0; i < n; ++i) (*this)[i] = !i; return *this; } while(l < n and (*this)[l] == 0) ++l; if(l > (n - 1) / k or l == n) return *this = F(n); T c = (*this)[l]; (*this).erase((*this).begin(), (*this).begin() + l); (*this) /= c; (*this).log_inplace(); (*this).resize(n - l * k); (*this) *= k; (*this).exp_inplace(); (*this) *= c.pow(k); (*this).insert((*this).begin(), l * k, 0); return *this; } F pow(const long long k) const { return F(*this).pow_inplace(); } void spacemul(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; for(int i=n-1;i>=0;i--){ (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i-j] * b; } } } void spacediv(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); for(int i=0;i<n;i++){ for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i-j] * b; } (*this)[i] *= ic; } } }; using fps = FormalPowerSeries<atcoder::modint998244353, FAST>; using mint = modint998244353; constexpr ll MAX = 300000; ll fac[MAX],finv[MAX],inv[MAX]; void COMinit(){ fac[0]=fac[1]=1; finv[0]=finv[1]=1; inv[1]=1; for(int i=2;i<MAX;i++){ fac[i]=fac[i-1]*i%mod; inv[i]=mod-inv[mod%i]*(mod/i)%mod; finv[i]=finv[i-1]*inv[i]%mod; } } ll COM(ll n,ll k){ if(n<k) return 0; if(n<0||k<0) return 0; return fac[n]*(finv[k]*finv[n-k]%mod)%mod; } ll HOM(ll n,ll k){ if(n+k-1>=n-1&&n-1>=0){ return COM(n+k-1,n-1); } else{ return 0; } } template <class T> vector<T> operator-(vector<T> a) { for (auto&& e : a) e = -e; return a; } template <class T> vector<T>& operator+=(vector<T>& l, const vector<T>& r) { l.resize(max(l.size(), r.size())); for (int i = 0; i < (int)r.size(); ++i) l[i] += r[i]; return l; } template <class T> vector<T> operator+(vector<T> l, const vector<T>& r) { return l += r; } template <class T> vector<T>& operator-=(vector<T>& l, const vector<T>& r) { l.resize(max(l.size(), r.size())); for (int i = 0; i < (int)r.size(); ++i) l[i] -= r[i]; return l; } template <class T> vector<T> operator-(vector<T> l, const vector<T>& r) { return l -= r; } template <class T> vector<T> operator*(const vector<T>& l, const vector<T>& r) { return convolution(l,r); } template <class T> vector<T>& operator*=(vector<T>& l, const vector<T>& r) { return l = l * r; } template <class T> vector<T> inverse(const vector<T>& a) { assert(not a.empty() and not (a[0] == 0)); vector<T> b{1 / a[0]}; while (b.size() < a.size()) { vector<T> x(begin(a), begin(a) + min(a.size(), 2 * b.size())); x *= b * b; b.resize(2 * b.size()); for (auto i = b.size() / 2; i < min(x.size(), b.size()); ++i) b[i] = -x[i]; } return {begin(b), begin(b) + a.size()}; } template <class T> vector<T> operator/(vector<T> l, vector<T> r) { if (l.size() < r.size()) return {}; reverse(begin(l), end(l)), reverse(begin(r), end(r)); int n = l.size() - r.size() + 1; l.resize(n), r.resize(n); l *= inverse(r); return {rend(l) - n, rend(l)}; } template <class T> vector<T>& operator/=(vector<T>& l, const vector<T>& r) { return l = l / r; } template <class T> vector<T> operator%(vector<T> l, const vector<T>& r) { if (l.size() < r.size()) return l; l -= l / r * r; return {begin(l), begin(l) + (r.size() - 1)}; } template <class T> vector<T>& operator%=(vector<T>& l, const vector<T>& r) { return l = l % r; } template <class T> vector<T> multipoint_evaluation(const vector<T>& poly, const vector<T>& x) { int n = x.size(); vector<vector<T>> t(2 * n); for (int i = 0; i < n; ++i) t[n + i] = {-x[i], 1}; for (int i = n; i-- > 1; ) t[i] = t[2 * i] * t[2 * i + 1]; t[1] = poly % t[1]; for (int i = 2; i < 2 * n; ++i) t[i] = t[i / 2] % t[i]; vector<T> res(n); for (int i = 0; i < n; ++i) res[i] = t[n + i][0]; return res; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int N; cin>>N; vector<int> A(N); rep(i,N) cin>>A[i]; auto calc = [&](auto self,int l,int r)->pair<mint,vector<mint>> { if (r==l+1){ return {1,{-A[l],1}}; } mint res_val = 1; vector<mint> res_poly = {1}; int mid = (l+r)>>1; auto [l_val,l_p] = self(self,l,mid); auto [r_val,r_p] = self(self,mid,r); res_val = l_val * r_val; res_poly = l_p * r_p; vector<mint> left_a = {A.begin()+l,A.begin()+mid}; vector<mint> right_a = {A.begin()+mid,A.begin()+r}; rep(_,1){ auto Y = multipoint_evaluation(l_p,right_a); for (auto y:Y){ res_val *= y; } } return {res_val,res_poly}; }; auto [res_val,res_poly] = calc(calc,0,N); if (((ll)N*(N-1)/2ll) & 1){ res_val = -res_val; } cout << res_val.val() << endl; }