結果
| 問題 |
No.2916 累進コスト最小化
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-10-21 10:00:29 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 352 ms / 3,500 ms |
| コード長 | 15,575 bytes |
| コンパイル時間 | 11,352 ms |
| コンパイル使用メモリ | 295,148 KB |
| 最終ジャッジ日時 | 2025-02-17 12:18:11 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 34 |
ソースコード
#ifdef DEBUG
#define _GLIBCXX_DEBUG
#define SIGNAL signal( SIGABRT , &AlertAbort );
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
#define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl
#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl
#define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl
#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl
#define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl
#else
#pragma GCC optimize ( "O3" )
#pragma GCC optimize ( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#define SIGNAL
#define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CERR( ... )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << "\n"
#define CERR_A( A , N )
#define COUT_A( A , N ) OUTPUT_ARRAY( cout , A , N ) << "\n"
#define CERR_ITR( A )
#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << "\n"
#endif
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
template <typename INT> using T2 = pair<INT,INT>;
#define REPEAT_MAIN( BOUND ) int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; DEXPR( int , bound_test_case_num , BOUND , min( BOUND , 100 ) ); int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ SET_ASSERT( test_case_num , 1 , bound_test_case_num ); } REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num , ":" ); } Solve(); CERR( "" ); } }
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define OUTPUT_ARRAY( OS , A , N ) FOR( VARIABLE_FOR_OUTPUT_ARRAY , 0 , N ){ OS << A[VARIABLE_FOR_OUTPUT_ARRAY] << (VARIABLE_FOR_OUTPUT_ARRAY==N-1?"":" "); } OS
#define OUTPUT_ITR( OS , A ) { auto ITERATOR_FOR_OUTPUT_ITR = A.begin() , END_FOR_OUTPUT_ITR = A.end(); bool VARIABLE_FOR_OUTPUT_ITR = ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR; while( VARIABLE_FOR_OUTPUT_ITR ){ OS << *ITERATOR_FOR_COUT_ITR; ( VARIABLE_FOR_OUTPUT_ITR = ++ITERATOR_FOR_COUT_ITR != END_FOR_COUT_ITR ) ? OS : OS << " "; } } OS
// 入出力用
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }
template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os << arg; }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }
// 二分探索テンプレート
// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
ll ANSWER = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L < VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
CERR( "二分探索中:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , "-" , TARGET , "=" , VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L; \
} \
ANSWER = UPDATE_ANSWER; \
} \
if( VARIABLE_FOR_BINARY_SEARCH_L > VARIABLE_FOR_BINARY_SEARCH_U ){ \
CERR( "二分探索失敗:" , VARIABLE_FOR_BINARY_SEARCH_L , ">" , VARIABLE_FOR_BINARY_SEARCH_U ); \
ANSWER = MAXIMUM + 1; \
} else { \
CERR( "二分探索終了:" , VARIABLE_FOR_BINARY_SEARCH_L , "<=" , ANSWER , "<=" , VARIABLE_FOR_BINARY_SEARCH_U , ":" , EXPRESSION , ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) , TARGET ); \
if( EXPRESSION DESIRED_INEQUALITY TARGET ){ \
CERR( "二分探索成功:" , #ANSWER , "=" , ANSWER ); \
} else { \
CERR( "二分探索失敗:" , EXPRESSION , "<>"[EXPRESSION > TARGET], TARGET ); \
ANSWER = MAXIMUM + 1; \
} \
} \
// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \
// グリッド問題用
int H , W , H_minus , W_minus , HW;
vector<vector<bool> > non_wall;
inline T2<int> EnumHW( const int& v ) { return { v / W , v % W }; }
inline int EnumHW_inv( const int& h , const int& w ) { return h * W + w; }
// グラフ用関数
template <typename PATH> list<PATH> E( const int& i );
template <typename PATH> vector<list<PATH> > e;
// デバッグ用
#ifdef DEBUG
inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
void AutoCheck( bool& auto_checked );
#endif
// Resetはm_foundとm_prevを初期化
// Shiftはm_foundとm_prevを非初期化
// Breadth/DepthFirstConnectedComponentSearchは無向グラフの連結成分を色分け&数え上げ
// Next()の反復でm_initから到達可能な頂点を全探索。
// 計算量O((m_initの連結成分)+(m_initの連結成分におけるEのサイズの合計))
#define DECLARATION_OF_FIRST_SEARCH( BREADTH ) \
template <int V_max> \
class BREADTH ## FirstSearch_Body \
{ \
\
protected: \
int m_V; \
int m_init; \
list<int> m_next; \
bool m_found[V_max]; \
int m_prev[V_max]; \
\
public: \
inline BREADTH ## FirstSearch_Body( const int& V ); \
inline BREADTH ## FirstSearch_Body( const int& V , const int& init ); \
\
inline void Reset( const int& init ); \
inline void Shift( const int& init ); \
\
inline const int& size() const; \
inline const int& init() const; \
inline bool& found( const int& i ); \
inline const int& prev( const int& i ) const; \
\
int Next(); \
\
private: \
virtual list<int> e( const int& t ) = 0; \
\
}; \
\
template <int V_max,list<int> E(const int&)> \
class BREADTH ## FirstSearch : \
public BREADTH ## FirstSearch_Body<V_max> \
{ \
\
public: \
template<typename... Args> inline BREADTH ## FirstSearch( const Args&... args ); \
\
private: \
inline list<int> e( const int& t ); \
\
}; \
\
template <int V_max,list<int> E(const int&)> void BREADTH ## FirstConnectedComponentSearch( const int& V , int ( &cc_numx )[V_max] , int& count ); \
#define DEFINITION_OF_FIRST_SEARCH( BREADTH , PUSH ) \
template <int V_max> inline BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body( const int& V ) : m_V( V ) , m_init() , m_next() , m_found() , m_prev() { assert( m_V <= V_max ); for( int i = 0 ; i < m_V ; i++ ){ m_prev[i] = -1; } } \
template <int V_max> inline BREADTH ## FirstSearch_Body<V_max>::BREADTH ## FirstSearch_Body( const int& V , const int& init ) : BREADTH ## FirstSearch_Body( V ) { m_init = init; m_next.push_back( m_init ); m_found[m_init] = true; } \
template <int V_max,list<int> E(const int&)> template <typename... Args> inline BREADTH ## FirstSearch<V_max,E>::BREADTH ## FirstSearch( const Args&... args ) : BREADTH ## FirstSearch_Body<V_max>( args... ) {} \
\
template <int V_max> inline void BREADTH ## FirstSearch_Body<V_max>::Reset( const int& init ) { m_init = init; assert( m_init < m_V ); m_next.clear(); m_next.push_back( m_init ); for( int i = 0 ; i < m_V ; i++ ){ m_found[i] = i == m_init; m_prev[i] = -1; } } \
template <int V_max> inline void BREADTH ## FirstSearch_Body<V_max>::Shift( const int& init ) { m_init = init; assert( m_init < m_V ); m_next.clear(); if( ! m_found[m_init] ){ m_next.push_back( m_init ); m_found[m_init] = true; } } \
\
template <int V_max> inline const int& BREADTH ## FirstSearch_Body<V_max>::size() const { return m_V; } \
template <int V_max> inline const int& BREADTH ## FirstSearch_Body<V_max>::init() const { return m_init; } \
template <int V_max> inline bool& BREADTH ## FirstSearch_Body<V_max>::found( const int& i ) { assert( i < m_V ); return m_found[i]; } \
template <int V_max> inline const int& BREADTH ## FirstSearch_Body<V_max>::prev( const int& i ) const { assert( i < m_V ); return m_prev[i]; } \
\
template <int V_max> \
int BREADTH ## FirstSearch_Body<V_max>::Next() \
{ \
\
if( m_next.empty() ){ \
\
return -1; \
\
} \
\
const int i_curr = m_next.front(); \
m_next.pop_front(); \
list<int> edge = e( i_curr ); \
\
while( ! edge.empty() ){ \
\
const int& i = edge.front(); \
bool& found_i = m_found[i]; \
\
if( ! found_i ){ \
\
m_next.PUSH( i ); \
m_prev[i] = i_curr; \
found_i = true; \
\
} \
\
edge.pop_front(); \
\
} \
\
return i_curr; \
\
} \
\
template <int V_max,list<int> E(const int&)> inline list<int> BREADTH ## FirstSearch<V_max,E>::e( const int& t ) { return E( t ); } \
\
template <int V_max,list<int> E(const int&)> void BREADTH ## FirstConnectedComponentSearch( const int& V , int ( &cc_num )[V_max] , int& count ) \
{ \
\
BREADTH ## FirstSearch<V_max,E> bfs{ V }; \
count = 0; \
\
for( int i = 0 ; i < V ; i++ ){ \
\
cc_num[i] = -1; \
\
} \
\
for( int i = 0 ; i < V ; i++ ){ \
\
if( cc_num[i] == -1 ){ \
\
bfs.Shift( i ); \
int j = bfs.Next(); \
\
while( j != -1 ? cc_num[j] == -1 : false ){ \
\
cc_num[j] = count; \
j = bfs.Next(); \
\
} \
\
count++; \
\
} \
\
} \
\
return; \
\
} \
DECLARATION_OF_FIRST_SEARCH( Breadth );
DEFINITION_OF_FIRST_SEARCH( Breadth , push_back );
vector<vector<vector<int> > > f{};
template <typename PATH> list<PATH> E( const int& i )
{
list<PATH> answer{};
// list<PATH> answer = e<PATH>[i];
// VVV 入力によらない処理は以下に挿入する。
auto [x,c] = EnumHW( i );
auto& e_x = e<int>[x];
FOR_ITR( e_x ){
int y = min( x , *itr );
int z = max( x , *itr );
if( f[z][y].empty() ? false : f[z][y][c] >= 0 ){
answer.push_back( EnumHW_inv( *itr , f[z][y][c] ) );
}
}
// AAA 入力によらない処理は以上に挿入する。
return answer;
}
inline void Solve()
{
CEXPR( int , bound_N , 10 ); // 0が1個
CIN_ASSERT( N , 2 , bound_N );
CIN_ASSERT( M , 1 , N * ( N - 1 ) / 2 );
DEXPR( int , bound_C , 100000 , 10 ); // 0が5個
CIN_ASSERT( C , 1 , bound_C );
H = N;
W = C + 1;
H_minus = H - 1;
HW = H * W;
e<int>.resize( N );
f.resize( N );
FOR( j , 0 , N ){
f[j].resize( j );
}
FOR( m , 0 , M ){
CIN_ASSERT( i , 1 , N );
CIN_ASSERT( j , i + 1 , N );
CIN_ASSERT( r , 1 , C );
CIN_ASSERT( w , 1 , C );
--i;
--j;
e<int>[i].push_back( j );
e<int>[j].push_back( i );
f[j][i].resize( W );
FOREQ( c , 0 , C ){
f[j][i][c] = max( -1 , c - c / r - w );
}
}
BreadthFirstSearch<bound_N * ( bound_C + 1 ),E<int>> bfs{ HW };
FOREQ( c , 1 , C ){
bfs.Shift( EnumHW_inv( 0 , c ) );
while( bfs.Next() != -1 ){}
if( !bfs.found( EnumHW_inv( H_minus , 0 ) ) ){
COUT( -1 );
} else {
BS3( answer , 0 , C , ( bfs.found( EnumHW_inv( H_minus , answer ) ) ? 1 : 0 ) , 1 );
COUT( answer );
}
}
}
REPEAT_MAIN(1);