結果
問題 | No.2507 Yet Another Subgraph Counting |
ユーザー | 👑 hos.lyric |
提出日時 | 2023-10-27 16:33:32 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,280 bytes |
コンパイル時間 | 1,292 ms |
コンパイル使用メモリ | 122,080 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-25 13:04:28 |
合計ジャッジ時間 | 3,586 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 5 ms
6,944 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 3 ms
6,940 KB |
testcase_08 | AC | 3 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 3 ms
6,944 KB |
testcase_11 | AC | 5 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 5 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 5 ms
6,940 KB |
testcase_18 | AC | 2 ms
6,944 KB |
testcase_19 | AC | 3 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 3 ms
6,944 KB |
testcase_23 | AC | 5 ms
6,940 KB |
testcase_24 | AC | 3 ms
6,944 KB |
testcase_25 | AC | 10 ms
6,940 KB |
testcase_26 | WA | - |
testcase_27 | AC | 5 ms
6,944 KB |
testcase_28 | AC | 10 ms
6,940 KB |
testcase_29 | AC | 2 ms
6,940 KB |
testcase_30 | WA | - |
testcase_31 | AC | 49 ms
6,944 KB |
testcase_32 | AC | 49 ms
6,944 KB |
testcase_33 | AC | 5 ms
6,940 KB |
testcase_34 | AC | 4 ms
6,944 KB |
testcase_35 | AC | 5 ms
6,944 KB |
testcase_36 | AC | 3 ms
6,940 KB |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | AC | 49 ms
6,940 KB |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | AC | 20 ms
6,940 KB |
testcase_44 | AC | 48 ms
6,944 KB |
testcase_45 | AC | 5 ms
6,944 KB |
testcase_46 | AC | 5 ms
6,940 KB |
testcase_47 | AC | 48 ms
6,944 KB |
testcase_48 | AC | 3 ms
6,940 KB |
testcase_49 | WA | - |
testcase_50 | AC | 3 ms
6,944 KB |
testcase_51 | AC | 21 ms
6,944 KB |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } #define COLOR(s) ("\x1b[" s "m") //////////////////////////////////////////////////////////////////////////////// template <unsigned M_> struct ModInt { static constexpr unsigned M = M_; unsigned x; constexpr ModInt() : x(0U) {} constexpr ModInt(unsigned x_) : x(x_ % M) {} constexpr ModInt(unsigned long long x_) : x(x_ % M) {} constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {} constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {} ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; } ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; } ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; } ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); } ModInt pow(long long e) const { if (e < 0) return inv().pow(-e); ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b; } ModInt inv() const { unsigned a = M, b = x; int y = 0, z = 1; for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; } assert(a == 1U); return ModInt(y); } ModInt operator+() const { return *this; } ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; } ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); } ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); } ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); } ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); } template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); } template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); } template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); } template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); } explicit operator bool() const { return x; } bool operator==(const ModInt &a) const { return (x == a.x); } bool operator!=(const ModInt &a) const { return (x != a.x); } friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; } }; //////////////////////////////////////////////////////////////////////////////// constexpr unsigned MO = 998244353; using Mint = ModInt<MO>; // as * bs // ZT: T[2^n][n+1] template <class T, class ZT> vector<T> setMul(int n, const vector<T> &as, const vector<T> &bs, ZT zas, ZT zbs) { assert(static_cast<int>(as.size()) == 1 << n); assert(static_cast<int>(bs.size()) == 1 << n); // ranked for (int h = 0; h < 1 << n; ++h) { memset(zas[h], 0, (n + 1) * sizeof(T)); zas[h][__builtin_popcount(h)] = as[h]; } for (int h = 0; h < 1 << n; ++h) { memset(zbs[h], 0, (n + 1) * sizeof(T)); zbs[h][__builtin_popcount(h)] = bs[h]; } // zeta for (int w = 1; w < 1 << n; w <<= 1) { for (int h0 = 0; h0 < 1 << n; h0 += w << 1) for (int h = h0; h < h0 + w; ++h) { for (int k = 0; k <= n; ++k) zas[h + w][k] += zas[h][k]; } } for (int w = 1; w < 1 << n; w <<= 1) { for (int h0 = 0; h0 < 1 << n; h0 += w << 1) for (int h = h0; h < h0 + w; ++h) { for (int k = 0; k <= n; ++k) zbs[h + w][k] += zbs[h][k]; } } // product for (int h = 0; h < 1 << n; ++h) { for (int k = n; k >= 0; --k) { T t = 0; for (int l = 0; l <= k; ++l) t += zas[h][l] * zbs[h][k - l]; zas[h][k] = t; } } // moebius for (int w = 1; w < 1 << n; w <<= 1) { for (int h0 = 0; h0 < 1 << n; h0 += w << 1) for (int h = h0; h < h0 + w; ++h) { for (int k = 0; k <= n; ++k) zas[h + w][k] -= zas[h][k]; } } // unrank vector<T> cs(1 << n); for (int h = 0; h < 1 << n; ++h) cs[h] = zas[h][__builtin_popcount(h)]; return cs; } // exp(as) // assume as[0] == 0 // exp(a0 + a1 X) = exp(a0) + exp(a0) a1 X // ZT1: T[2^(n-1)][n] // ZT: T[2^n][n+1] template <class T, class ZT1, class ZT> vector<T> setExp(int n, const vector<T> &as, ZT1 zas, ZT zbs) { assert(static_cast<int>(as.size()) == 1 << n); assert(as[0] == 0); zbs[0][0] = 1; for (int m = 0; m < n; ++m) { // ranked a[2^m, 2^(m+1)) for (int h = 0; h < 1 << m; ++h) { memset(zas[h], 0, (m + 1) * sizeof(T)); zas[h][__builtin_popcount(h)] = as[(1 << m) + h]; } // zeta for (int w = 1; w < 1 << m; w <<= 1) { for (int h0 = 0; h0 < 1 << m; h0 += w << 1) for (int h = h0; h < h0 + w; ++h) { for (int k = 0; k <= m; ++k) zas[h + w][k] += zas[h][k]; } } for (int h = 0; h < 1 << m; ++h) { // zeta zbs[h][m + 1] = 0; memcpy(zbs[(1 << m) + h], zbs[h], ((m + 1) + 1) * sizeof(T)); // product for (int k = 0; k <= m; ++k) for (int l = 0; l <= m - k; ++l) { zbs[(1 << m) + h][k + l + 1] += zbs[h][k] * zas[h][l]; } } } // moebius for (int w = 1; w < 1 << n; w <<= 1) { for (int h0 = 0; h0 < 1 << n; h0 += w << 1) for (int h = h0; h < h0 + w; ++h) { for (int k = 0; k <= n; ++k) zbs[h + w][k] -= zbs[h][k]; } } // unrank vector<T> bs(1 << n); for (int h = 0; h < 1 << n; ++h) bs[h] = zbs[h][__builtin_popcount(h)]; return bs; } // \sum[0<=i<=n] fs[i] as^i/i! // assume as[0] == 0 // f(a0 + a1 X) + f(a0) + f'(a0) a1 X // ZT1: T[2^(n-1)][n] // ZT: T[2^(n+1)][n+1] template <class T, class ZT1, class ZT> vector<T> setCom(int n, const vector<T> &fs, const vector<T> &as, ZT1 zas, ZT zbs) { assert(static_cast<int>(fs.size()) == n + 1); assert(static_cast<int>(as.size()) == 1 << n); assert(as[0] == 0); // zbs[2^(n-i), 2^(n-i+1)): composite f^(i) for (int i = 0; i <= n; ++i) zbs[1<<(n-i)][0] = fs[i]; for (int m = 0; m < n; ++m) { // ranked a[2^m, 2^(m+1)) for (int h = 0; h < 1 << m; ++h) { memset(zas[h], 0, (m + 1) * sizeof(T)); zas[h][__builtin_popcount(h)] = as[(1 << m) + h]; } // zeta for (int w = 1; w < 1 << m; w <<= 1) { for (int h0 = 0; h0 < 1 << m; h0 += w << 1) for (int h = h0; h < h0 + w; ++h) { for (int k = 0; k <= m; ++k) zas[h + w][k] += zas[h][k]; } } for (int i = 0; i < n - m; ++i) { for (int h = 0; h < 1 << m; ++h) { // zeta zbs[(1<<(n-i)) + h][m + 1] = 0; memcpy(zbs[(1<<(n-i)) + (1 << m) + h], zbs[(1<<(n-i)) + h], ((m + 1) + 1) * sizeof(T)); // product for (int k = 0; k <= m; ++k) for (int l = 0; l <= m - k; ++l) { zbs[(1<<(n-i)) + (1 << m) + h][k + l + 1] += zbs[(1<<(n-(i+1))) + h][k] * zas[h][l]; } } } } // moebius for (int w = 1; w < 1 << n; w <<= 1) { for (int h0 = 0; h0 < 1 << n; h0 += w << 1) for (int h = h0; h < h0 + w; ++h) { for (int k = 0; k <= n; ++k) zbs[(1<<n) + h + w][k] -= zbs[(1<<n) + h][k]; } } // unrank vector<T> bs(1 << n); for (int h = 0; h < 1 << n; ++h) bs[h] = zbs[(1<<n) + h][__builtin_popcount(h)]; return bs; } // \sum[i] fs[i] as^i // not necessarily as[0] == 0 // ZT1: T[2^(n-1)][n] // ZT: T[2^(n+1)][n+1] template <class T, class ZT1, class ZT> vector<T> setComPoly(int n, vector<T> fs, vector<T> as, ZT1 zas, ZT zbs) { assert(static_cast<int>(as.size()) == 1 << n); const int fsLen = fs.size(); if (fsLen == 0) return vector<T>(1 << n, 0); vector<T> gs(n + 1); for (int i = 0; i <= n; ++i) { T t = 0; for (int j = fsLen; --j >= 0; ) (t *= as[0]) += fs[j]; gs[i] = t; for (int j = 1; j < fsLen; ++j) fs[j - 1] = j * fs[j]; fs[fsLen - 1] = 0; } as[0] = 0; return setCom(n, gs, as, zas, zbs); } //////////////////////////////////////////////////////////////////////////////// constexpr int MAX_N = 13; Mint zas[1 << (MAX_N + 1)][MAX_N + 1]; Mint zbs[1 << (MAX_N + 1)][MAX_N + 1]; int N, M; vector<int> A, B; Mint dp[1 << MAX_N][MAX_N]; int main() { for (; ~scanf("%d%d", &N, &M); ) { A.resize(M); B.resize(M); for (int i = 0; i < M; ++i) { scanf("%d%d", &A[i], &B[i]); --A[i]; --B[i]; if (A[i] > B[i]) { swap(A[i], B[i]); } } vector<int> adj(N, 0); for (int i = 0; i < M; ++i) { adj[A[i]] |= 1 << B[i]; adj[B[i]] |= 1 << A[i]; } // cycle vector<Mint> cs(1 << N, 0); memset(dp, 0, sizeof(dp)); for (int r = 0; r < N; ++r) { dp[1 << r][r] = 1; for (int p = 1 << r; p < 1 << (r + 1); ++p) { for (int u = 0; u <= r; ++u) if (p & 1 << u) { for (int v = 0; v < r; ++v) if (!(p & 1 << v)) { if (adj[u] >> v & 1) { dp[p | 1 << v][v] += dp[p][u]; } } if (adj[u] >> r & 1) { cs[p] += dp[p][u]; } } } } const Mint INV2 = Mint(2).inv(); for (int i = 0; i < M; ++i) cs[1 << A[i] | 1 << B[i]] -= 1; for (int p = 0; p < 1 << N; ++p) cs[p] *= INV2; // cerr<<"cs = "<<cs<<endl; for (int u = 0; u < N; ++u) cs[1 << u] += 1; fill(adj.begin(), adj.end(), 0); for (int i = 0; i < M; ++i) { adj[B[i]] |= 1 << A[i]; } for (int r = 1; r < N; ++r) { /* cs[p]: before: connected graph on p, allow bridge (u, v) s.t. u < v < r after : connected graph on p, allow bridge (u, v) s.t. u < v <= r */ vector<Mint> ds(1 << (N - 1)), es(1 << (N - 1)); for (int p = 0; p < 1 << r; ++p) for (int q = 0; q < 1 << (N-1-r); ++q) { ds[p | q << r] = cs[p | 1 << r | q << (r + 1)]; es[p | q << r] = __builtin_popcount(p & adj[r]) * cs[p | q << (r + 1)]; } es = setExp(N - 1, es, zas, zbs); ds = setMul(N - 1, ds, es, zas, zbs); for (int p = 0; p < 1 << r; ++p) for (int q = 0; q < 1 << (N-1-r); ++q) { cs[p | 1 << r | q << (r + 1)] = ds[p | q << r]; } // cerr<<"cs = "<<cs<<endl; } cs = setExp(N, cs, zas, zbs); printf("%u\n", cs.back().x); } return 0; }