結果

問題 No.2524 Stripes
ユーザー hotman78
提出日時 2023-10-27 21:42:40
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 575 ms / 7,000 ms
コード長 43,146 bytes
コンパイル時間 22,668 ms
コンパイル使用メモリ 357,488 KB
最終ジャッジ日時 2025-02-17 14:47:04
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// author: hotman78
// date: 2023/10/27-21:42:30
// --- begin raw code -----------------
// #include"cpplib/util/template.hpp"
// #include"cpplib/math/ACL_modint998244353.hpp"
// #include<atcoder/convolution.hpp>
// #include"cpplib/math/poly.hpp"
//
// int main(){
// lint n;
// string s;
// cin>>n>>s;
// vector<array<poly,4>>v(n*2);
// lint sz=1;
// while(sz<n)sz*=2;
// rep(i,n){
// if(s[i]=='R'){
// v[(i+sz+n)%n+n][0]=poly{0,1};
// // v[(i+sz+n)%n+n][1]=poly{1};
// // v[(i+sz+n)%n+n][2]=poly{1};
// }else{
// v[(i+sz+n)%n+n][3]=poly{0,1};
// // v[(i+sz+n)%n+n][1]=poly{1};
// // v[(i+sz+n)%n+n][2]=poly{1};
// }
// }
// auto mul=[&](auto a,auto b){
// array<poly,4>ret;
// rep(i,2)rep(j,2)rep(k,2){
// ret[i*2+k]+=a[i*2+j]*b[(1-j)*2+k];
// }
// rep(i,4)ret[i]+=a[i];
// rep(i,4)ret[i]+=b[i];
// return ret;
// };
// rrep(i,1,n){
// v[i]=mul(v[i*2],v[i*2+1]);
// // debug2(v[i]);
// }
// poly ans;
// rep(i,4){
// ans+=v[1][i];
// }
// ans.erase(ans.begin());
// while(ans.size()<n)ans.emplace_back(0);
// rep(i,n){
// cout<<ans[i]<<endl;
// }
// }
// --- end raw code -----------------
#line 2 "cpplib/util/template.hpp"
#ifdef LOCAL
#define _GLIBCXX_DEBUG
#endif
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx2")
#include <bits/stdc++.h>
using namespace std;
#line 1 "cpplib/util/ioutil.hpp"
// template <class Head,class... Args>
// std::ostream& output(std::ostream& out,const Head& head,const Args&... args){
// out>>head;
// return output(head,args...);
// }
// template <class Head>
// std::ostream& output(std::ostream& out,const Head& head){
// out>>head;
// return out;
// }
template <typename T, typename E>
std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) {
out << "(" << v.first << "," << v.second << ")";
return out;
}
// template <class... Args>
// ostream& operator<<(ostream& out,std::tuple<Args...>v){
// std::apply(output,v);
// return out;
// }
#line 11 "cpplib/util/template.hpp"
struct __INIT__ {
__INIT__() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __INIT__;
typedef long long lint;
constexpr long long INF = 1LL << 60;
constexpr int IINF = 1 << 30;
constexpr double EPS = 1e-10;
#ifndef REACTIVE
#define endl '\n';
#endif
typedef vector<lint> vec;
typedef vector<vector<lint>> mat;
typedef vector<vector<vector<lint>>> mat3;
typedef vector<string> svec;
typedef vector<vector<string>> smat;
template <typename T> using V = vector<T>;
template <typename T> using VV = V<V<T>>;
#define output(t) \
{ \
bool f = 0; \
for (auto val : (t)) { \
cout << (f ? " " : "") << val; \
f = 1; \
} \
cout << endl; \
}
#define output2(t) \
{ \
for (auto i : t) \
output(i); \
}
#define debug(t) \
{ \
bool f = 0; \
for (auto i : t) { \
cerr << (f ? " " : "") << i; \
f = 1; \
} \
cerr << endl; \
}
#define debug2(t) \
{ \
for (auto i : t) \
debug(i); \
}
#define loop(n) for (long long _ = 0; _ < (long long)(n); ++_)
#define _overload4(_1, _2, _3, _4, name, ...) name
#define __rep(i, a) repi(i, 0, a, 1)
#define _rep(i, a, b) repi(i, a, b, 1)
#define repi(i, a, b, c) \
for (long long i = (long long)(a); i < (long long)(b); i += c)
#define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__)
#define _overload3_rev(_1, _2, _3, name, ...) name
#define _rep_rev(i, a) repi_rev(i, 0, a)
#define repi_rev(i, a, b) \
for (long long i = (long long)(b)-1; i >= (long long)(a); --i)
#define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__)
#define all(n) begin(n), end(n)
template <typename T, typename E> bool chmin(T &s, const E &t) {
bool res = s > t;
s = min<T>(s, t);
return res;
}
template <typename T, typename E> bool chmax(T &s, const E &t) {
bool res = s < t;
s = max<T>(s, t);
return res;
}
const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1};
const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1};
#define SUM(v) accumulate(all(v), 0LL)
#if __cplusplus >= 201703L
template <typename T, typename... Args>
auto make_vector(T x, int arg, Args... args) {
if constexpr (sizeof...(args) == 0)
return vector<T>(arg, x);
else
return vector(arg, make_vector<T>(x, args...));
}
#endif
#define extrep(v, ...) for (auto v : __MAKE_MAT__({__VA_ARGS__}))
#define bit(n, a) ((n >> a) & 1)
vector<vector<long long>> __MAKE_MAT__(vector<long long> v) {
if (v.empty())
return vector<vector<long long>>(1, vector<long long>());
long long n = v.back();
v.pop_back();
vector<vector<long long>> ret;
vector<vector<long long>> tmp = __MAKE_MAT__(v);
for (auto e : tmp)
for (long long i = 0; i < n; ++i) {
ret.push_back(e);
ret.back().push_back(i);
}
return ret;
}
using graph = vector<vector<int>>;
template <typename T> using graph_w = vector<vector<pair<int, T>>>;
#if __cplusplus >= 201703L
constexpr inline long long powll(long long a, long long b) {
long long res = 1;
while (b--)
res *= a;
return res;
}
#endif
template <typename T, typename E>
pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) {
s.first += t.first;
s.second += t.second;
return s;
}
template <typename T, typename E>
pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) {
s.first -= t.first;
s.second -= t.second;
return s;
}
template <typename T, typename E>
pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) {
auto res = s;
return res += t;
}
template <typename T, typename E>
pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) {
auto res = s;
return res -= t;
}
#define BEGIN_STACK_EXTEND(size) \
void *stack_extend_memory_ = malloc(size); \
void *stack_extend_origin_memory_; \
char *stack_extend_dummy_memory_ = (char *)alloca( \
(1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \
*stack_extend_dummy_memory_ = 0; \
asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \
: "=b"(stack_extend_origin_memory_) \
: "a"((char *)stack_extend_memory_ + (size)-1024));
#define END_STACK_EXTEND \
asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \
free(stack_extend_memory_);
int floor_pow(int n) { return n ? 31 - __builtin_clz(n) : 0; }
#line 2 "cpplib/math/ACL_modint998244353.hpp"
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0)
x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
explicit barrett(unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1)
return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1)
r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1)
return false;
if (n == 2 || n == 7 || n == 61)
return true;
if (n % 2 == 0)
return false;
long long d = n - 1;
while (d % 2 == 0)
d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0)
return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0)
m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2)
return 1;
if (m == 167772161)
return 3;
if (m == 469762049)
return 3;
if (m == 754974721)
return 11;
if (m == 998244353)
return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0)
x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok)
return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m)
break;
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0)
x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint &operator--() {
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v -= rhs._v;
if (_v >= umod())
_v += umod();
return *this;
}
mint &operator*=(const mint &rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T> * = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0)
x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T> * = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod())
_v = 0;
return *this;
}
mint &operator--() {
if (_v == 0)
_v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v += mod() - rhs._v;
if (_v >= umod())
_v -= umod();
return *this;
}
mint &operator*=(const mint &rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1)
r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint = atcoder::modint998244353;
#line 4 "cpplib/math/ACL_modint_base.hpp"
std::ostream &operator<<(std::ostream &lhs, const mint &rhs) noexcept {
lhs << rhs.val();
return lhs;
}
std::istream &operator>>(std::istream &lhs, mint &rhs) noexcept {
long long x;
lhs >> x;
rhs = x;
return lhs;
}
int MOD_NOW = -1;
int FACT_TABLE_SIZE = 0;
std::vector<mint> fact_table, fact_inv_table;
void update(int x) {
if (MOD_NOW != mint::mod() || FACT_TABLE_SIZE == 0) {
fact_table.assign(1, 1);
fact_inv_table.assign(1, 1);
FACT_TABLE_SIZE = 1;
MOD_NOW = mint::mod();
}
while (FACT_TABLE_SIZE <= x) {
fact_table.resize(FACT_TABLE_SIZE * 2);
fact_inv_table.resize(FACT_TABLE_SIZE * 2);
for (int i = FACT_TABLE_SIZE; i < FACT_TABLE_SIZE * 2; ++i) {
fact_table[i] = fact_table[i - 1] * i;
}
fact_inv_table[FACT_TABLE_SIZE * 2 - 1] =
fact_table[FACT_TABLE_SIZE * 2 - 1].inv();
for (int i = FACT_TABLE_SIZE * 2 - 2; i >= FACT_TABLE_SIZE; --i) {
fact_inv_table[i] = fact_inv_table[i + 1] * (i + 1);
}
FACT_TABLE_SIZE *= 2;
}
}
inline mint fact(int x) {
assert(x >= 0);
update(x);
return fact_table[x];
}
inline mint fact_inv(int x) {
assert(x >= 0);
update(x);
return fact_inv_table[x];
}
inline mint comb(int x, int y) {
if (x < 0 || x < y || y < 0)
return 0;
return fact(x) * fact_inv(y) * fact_inv(x - y);
}
inline mint perm(int x, int y) { return fact(x) * fact_inv(x - y); }
// xy
inline mint multi_comb(int x, int y) {
if (y == 0 && x >= 0)
return 1;
if (y < 0 || x <= 0)
return 0;
return comb(x + y - 1, y);
}
#line 3 "main.cpp"
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if __cplusplus >= 202002L
#include <bit>
#endif
namespace atcoder {
namespace internal {
#if __cplusplus >= 202002L
using std::bit_ceil;
#else
unsigned int bit_ceil(unsigned int n) {
unsigned int x = 1;
while (x < (unsigned int)(n))
x *= 2;
return x;
}
#endif
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x)))
x++;
return x;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class mint, int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint> * = nullptr>
struct fft_info {
static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
void butterfly(std::vector<mint> &a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[countr_zero(~(unsigned int)(s))];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[countr_zero(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
void butterfly_inv(std::vector<mint> &a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[countr_zero(~(unsigned int)(s))];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[countr_zero(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint> &a,
const std::vector<mint> &b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++)
a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
std::vector<mint> convolution(std::vector<mint> &&a, std::vector<mint> &&b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m)
return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60)
return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint> * = nullptr>
std::vector<mint> convolution(const std::vector<mint> &a,
const std::vector<mint> &b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m)
return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60)
return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353, class T,
std::enable_if_t<internal::is_integral<T>::value> * = nullptr>
std::vector<T> convolution(const std::vector<T> &a, const std::vector<T> &b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m)
return {};
using mint = static_modint<mod>;
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(std::move(a2), std::move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long> &a,
const std::vector<long long> &b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m)
return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
static constexpr int MAX_AB_BIT = 24;
static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1,
"MOD1 isn't enough to support an array length of 2^24.");
static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1,
"MOD2 isn't enough to support an array length of 2^24.");
static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1,
"MOD3 isn't enough to support an array length of 2^24.");
assert(n + m - 1 <= (1 << MAX_AB_BIT));
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0)
diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
#line 2 "cpplib/math/poly.hpp"
using poly = vector<mint>;
int size(const poly &x) { return x.size(); }
poly shrink(poly x) {
while (size(x) >= 1 && x.back().val() == 0)
x.pop_back();
return x;
}
poly pre(const poly &x, int n) {
auto res = x;
res.resize(n);
return res;
}
poly operator+(const poly &x, const poly &y) {
poly res(max(x.size(), y.size()));
rep(i, 0, x.size()) res[i] += x[i];
rep(i, 0, y.size()) res[i] += y[i];
return res;
}
poly &operator*=(poly &x, const mint &y) {
rep(i, 0, x.size()) x[i] *= y;
return x;
}
poly operator*(poly x, const mint &y) { return x *= y; }
poly operator-(const poly &x) {
poly res(x.size());
rep(i, 0, x.size()) res[i] = -x[i];
return res;
}
poly operator-(const poly &x, const poly &y) { return x + (-y); }
poly operator*(const poly &x, const poly &y) {
return atcoder::convolution(x, y);
}
// poly operator*(const poly&x,const poly&y){
// poly res(x.size()+y.size()-1);
// for(int i=0;i<x.size();++i){
// for(int j=0;j<y.size();++j){
// res[i+j]+=x[i]*y[j];
// }
// }
// return res;
// }
// poly operator*(const poly&x,const poly&y){
// return convolution(x,y);
// }
poly &operator+=(poly &x, const poly &y) { return x = (x + y); }
poly &operator-=(poly &x, const poly &y) { return x = (x - y); }
poly &operator*=(poly &x, const poly &y) { return x = (x * y); }
istream &operator>>(istream &in, poly &y) {
int n = size(y);
rep(i, 0, n) in >> y[i];
return in;
}
ostream &operator<<(ostream &out, const poly &y) {
int n = size(y);
rep(i, 0, n) {
if (i)
out << ' ';
out << y[i].val();
}
return out;
}
poly diff(const poly &x) {
int n = size(x);
poly res(n - 1);
rep(i, 0, n - 1) res[i] = x[i + 1] * (i + 1);
return res;
}
poly integrate(const poly &x) {
int n = size(x);
poly res(n + 1);
rep(i, 1, n + 1) res[i] = x[i - 1] / i;
return res;
}
poly inv(const poly &x) {
int n = size(x);
if (n == 1)
return poly{x[0].inv()};
auto c = inv(pre(x, (n + 1) / 2));
return pre(c * (poly{2} - c * x), n);
}
poly log(const poly &x) {
int n = size(x);
assert(x[0].val() == 1);
return pre(integrate(diff(x) * inv(x)), n);
}
poly exp(const poly &x) {
assert(x[0].val() == 0);
int n = size(x);
if (n == 1)
return poly{1};
auto c = exp(pre(x, (n + 1) / 2));
return pre(c * (poly{1} - log(pre(c, n)) + x), n);
}
pair<poly, poly> divmod(const poly &a, const poly &b) {
assert(!b.empty());
if (b.back().val() == 0)
return divmod(a, shrink(b));
if (a.empty())
return make_pair(poly{}, poly{});
if (a.back().val() == 0)
return divmod(shrink(a), b);
int n = max(0, size(a) - size(b) + 1);
if (n == 0)
return make_pair(poly{}, a);
auto c = a;
auto d = b;
reverse(c.begin(), c.end());
reverse(d.begin(), d.end());
d.resize(n);
c *= inv(d);
c.resize(n);
reverse(c.begin(), c.end());
return make_pair(c, pre(a - c * b, (int)b.size() - 1));
}
mint eval(const poly &a, const mint &x) {
int n = a.size();
mint ans = 0;
for (int i = n - 1; i >= 0; --i) {
ans = ans * x + a[i];
}
return ans;
}
poly multipoint_evalution(const poly &a, const poly &b) {
int n = b.size();
vector<poly> v(n * 2);
rep(i, 0, n) { v[i + n] = poly{-mint(b[i]), mint(1)}; }
for (int i = n - 1; i >= 1; --i) {
v[i] = v[i * 2] * v[i * 2 + 1];
}
poly ans(n);
v[0] = a;
rep(i, 1, n * 2) {
v[i] = divmod(v[i / 2], v[i]).second;
if (i >= n)
ans[i - n] = v[i][0];
}
return ans;
}
mint difference_product(poly a) {
reverse(a.begin(), a.end());
int n = a.size();
vector<poly> v(n * 2), tb2(n * 2);
vector<poly> tb(n * 2);
int sz = 1;
while (sz < n)
sz *= 2;
rep(i, 0, n) { v[(i + sz - n) % n + n] = poly{-a[i], mint(1)}; }
rep(i, 0, n) { tb[(i + sz - n) % n + n] = poly{a[i], -mint(1)}; }
for (int i = n - 1; i >= 1; --i) {
v[i] = v[i * 2] * v[i * 2 + 1];
}
for (int i = n - 1; i >= 1; --i) {
tb[i] = tb[i * 2] * tb[i * 2 + 1];
}
mint ans = 1;
tb2[1] = poly{1};
auto dfs = [&](auto dfs, lint i) -> void {
if (i >= n) {
return;
}
tb2[i * 2] = divmod(tb2[i], v[i * 2]).second;
dfs(dfs, i * 2);
tb2[i * 2 + 1] = divmod(tb2[i] * tb[i * 2], v[i * 2 + 1]).second;
dfs(dfs, i * 2 + 1);
};
dfs(dfs, 1);
rep(i, 0, n) {
// cerr<<tb2[i+n].size()<<endl;
ans *= tb2[i + n].size() ? tb2[i + n][0] : mint(0);
}
return ans;
}
vector<mint> composition(vector<mint> f, vector<mint> g) {
int n = f.size(), m = g.size();
assert(n == m);
vector<mint> res(n);
int b = ceil(sqrt(n));
vector<vector<mint>> g_pow(b + 1);
g_pow[0] = vector<mint>{1};
for (int i = 0; i < b; ++i) {
g_pow[i + 1] = g_pow[i] * g;
g_pow[i + 1].resize(n);
}
vector<mint> g_pow2 = vector<mint>{1};
for (int i = 0; i < n; i += b) {
vector<mint> tmp;
for (int j = i; j < std::min(i + b, n); ++j) {
tmp += g_pow[j - i] * f[j];
}
res += tmp * g_pow2;
res.resize(n);
g_pow2 *= g_pow[b];
g_pow2.resize(n);
}
return res;
}
#line 5 "main.cpp"
int main() {
lint n;
string s;
cin >> n >> s;
vector<array<poly, 4>> v(n * 2);
lint sz = 1;
while (sz < n)
sz *= 2;
rep(i, n) {
if (s[i] == 'R') {
v[(i + sz + n) % n + n][0] = poly{0, 1};
// v[(i+sz+n)%n+n][1]=poly{1};
// v[(i+sz+n)%n+n][2]=poly{1};
} else {
v[(i + sz + n) % n + n][3] = poly{0, 1};
// v[(i+sz+n)%n+n][1]=poly{1};
// v[(i+sz+n)%n+n][2]=poly{1};
}
}
auto mul = [&](auto a, auto b) {
array<poly, 4> ret;
rep(i, 2) rep(j, 2) rep(k, 2) {
ret[i * 2 + k] += a[i * 2 + j] * b[(1 - j) * 2 + k];
}
rep(i, 4) ret[i] += a[i];
rep(i, 4) ret[i] += b[i];
return ret;
};
rrep(i, 1, n) {
v[i] = mul(v[i * 2], v[i * 2 + 1]);
// debug2(v[i]);
}
poly ans;
rep(i, 4) { ans += v[1][i]; }
ans.erase(ans.begin());
while (ans.size() < n)
ans.emplace_back(0);
rep(i, n) { cout << ans[i] << endl; }
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0