結果
問題 | No.2524 Stripes |
ユーザー |
![]() |
提出日時 | 2023-10-27 21:42:40 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 575 ms / 7,000 ms |
コード長 | 43,146 bytes |
コンパイル時間 | 22,668 ms |
コンパイル使用メモリ | 357,488 KB |
最終ジャッジ日時 | 2025-02-17 14:47:04 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 25 |
ソースコード
// author: hotman78// date: 2023/10/27-21:42:30// --- begin raw code -----------------// #include"cpplib/util/template.hpp"// #include"cpplib/math/ACL_modint998244353.hpp"// #include<atcoder/convolution.hpp>// #include"cpplib/math/poly.hpp"//// int main(){// lint n;// string s;// cin>>n>>s;// vector<array<poly,4>>v(n*2);// lint sz=1;// while(sz<n)sz*=2;// rep(i,n){// if(s[i]=='R'){// v[(i+sz+n)%n+n][0]=poly{0,1};// // v[(i+sz+n)%n+n][1]=poly{1};// // v[(i+sz+n)%n+n][2]=poly{1};// }else{// v[(i+sz+n)%n+n][3]=poly{0,1};// // v[(i+sz+n)%n+n][1]=poly{1};// // v[(i+sz+n)%n+n][2]=poly{1};// }// }// auto mul=[&](auto a,auto b){// array<poly,4>ret;// rep(i,2)rep(j,2)rep(k,2){// ret[i*2+k]+=a[i*2+j]*b[(1-j)*2+k];// }// rep(i,4)ret[i]+=a[i];// rep(i,4)ret[i]+=b[i];// return ret;// };// rrep(i,1,n){// v[i]=mul(v[i*2],v[i*2+1]);// // debug2(v[i]);// }// poly ans;// rep(i,4){// ans+=v[1][i];// }// ans.erase(ans.begin());// while(ans.size()<n)ans.emplace_back(0);// rep(i,n){// cout<<ans[i]<<endl;// }// }// --- end raw code -----------------#line 2 "cpplib/util/template.hpp"#ifdef LOCAL#define _GLIBCXX_DEBUG#endif#pragma GCC optimize("Ofast")#pragma GCC optimize("unroll-loops")#pragma GCC target("avx2")#include <bits/stdc++.h>using namespace std;#line 1 "cpplib/util/ioutil.hpp"// template <class Head,class... Args>// std::ostream& output(std::ostream& out,const Head& head,const Args&... args){// out>>head;// return output(head,args...);// }// template <class Head>// std::ostream& output(std::ostream& out,const Head& head){// out>>head;// return out;// }template <typename T, typename E>std::ostream &operator<<(std::ostream &out, std::pair<T, E> v) {out << "(" << v.first << "," << v.second << ")";return out;}// template <class... Args>// ostream& operator<<(ostream& out,std::tuple<Args...>v){// std::apply(output,v);// return out;// }#line 11 "cpplib/util/template.hpp"struct __INIT__ {__INIT__() {cin.tie(0);ios::sync_with_stdio(false);cout << fixed << setprecision(15);}} __INIT__;typedef long long lint;constexpr long long INF = 1LL << 60;constexpr int IINF = 1 << 30;constexpr double EPS = 1e-10;#ifndef REACTIVE#define endl '\n';#endiftypedef vector<lint> vec;typedef vector<vector<lint>> mat;typedef vector<vector<vector<lint>>> mat3;typedef vector<string> svec;typedef vector<vector<string>> smat;template <typename T> using V = vector<T>;template <typename T> using VV = V<V<T>>;#define output(t) \{ \bool f = 0; \for (auto val : (t)) { \cout << (f ? " " : "") << val; \f = 1; \} \cout << endl; \}#define output2(t) \{ \for (auto i : t) \output(i); \}#define debug(t) \{ \bool f = 0; \for (auto i : t) { \cerr << (f ? " " : "") << i; \f = 1; \} \cerr << endl; \}#define debug2(t) \{ \for (auto i : t) \debug(i); \}#define loop(n) for (long long _ = 0; _ < (long long)(n); ++_)#define _overload4(_1, _2, _3, _4, name, ...) name#define __rep(i, a) repi(i, 0, a, 1)#define _rep(i, a, b) repi(i, a, b, 1)#define repi(i, a, b, c) \for (long long i = (long long)(a); i < (long long)(b); i += c)#define rep(...) _overload4(__VA_ARGS__, repi, _rep, __rep)(__VA_ARGS__)#define _overload3_rev(_1, _2, _3, name, ...) name#define _rep_rev(i, a) repi_rev(i, 0, a)#define repi_rev(i, a, b) \for (long long i = (long long)(b)-1; i >= (long long)(a); --i)#define rrep(...) _overload3_rev(__VA_ARGS__, repi_rev, _rep_rev)(__VA_ARGS__)#define all(n) begin(n), end(n)template <typename T, typename E> bool chmin(T &s, const E &t) {bool res = s > t;s = min<T>(s, t);return res;}template <typename T, typename E> bool chmax(T &s, const E &t) {bool res = s < t;s = max<T>(s, t);return res;}const vector<lint> dx = {1, 0, -1, 0, 1, 1, -1, -1};const vector<lint> dy = {0, 1, 0, -1, 1, -1, 1, -1};#define SUM(v) accumulate(all(v), 0LL)#if __cplusplus >= 201703Ltemplate <typename T, typename... Args>auto make_vector(T x, int arg, Args... args) {if constexpr (sizeof...(args) == 0)return vector<T>(arg, x);elsereturn vector(arg, make_vector<T>(x, args...));}#endif#define extrep(v, ...) for (auto v : __MAKE_MAT__({__VA_ARGS__}))#define bit(n, a) ((n >> a) & 1)vector<vector<long long>> __MAKE_MAT__(vector<long long> v) {if (v.empty())return vector<vector<long long>>(1, vector<long long>());long long n = v.back();v.pop_back();vector<vector<long long>> ret;vector<vector<long long>> tmp = __MAKE_MAT__(v);for (auto e : tmp)for (long long i = 0; i < n; ++i) {ret.push_back(e);ret.back().push_back(i);}return ret;}using graph = vector<vector<int>>;template <typename T> using graph_w = vector<vector<pair<int, T>>>;#if __cplusplus >= 201703Lconstexpr inline long long powll(long long a, long long b) {long long res = 1;while (b--)res *= a;return res;}#endiftemplate <typename T, typename E>pair<T, E> &operator+=(pair<T, E> &s, const pair<T, E> &t) {s.first += t.first;s.second += t.second;return s;}template <typename T, typename E>pair<T, E> &operator-=(pair<T, E> &s, const pair<T, E> &t) {s.first -= t.first;s.second -= t.second;return s;}template <typename T, typename E>pair<T, E> operator+(const pair<T, E> &s, const pair<T, E> &t) {auto res = s;return res += t;}template <typename T, typename E>pair<T, E> operator-(const pair<T, E> &s, const pair<T, E> &t) {auto res = s;return res -= t;}#define BEGIN_STACK_EXTEND(size) \void *stack_extend_memory_ = malloc(size); \void *stack_extend_origin_memory_; \char *stack_extend_dummy_memory_ = (char *)alloca( \(1 + (int)(((long long)stack_extend_memory_) & 127)) * 16); \*stack_extend_dummy_memory_ = 0; \asm volatile("mov %%rsp, %%rbx\nmov %%rax, %%rsp" \: "=b"(stack_extend_origin_memory_) \: "a"((char *)stack_extend_memory_ + (size)-1024));#define END_STACK_EXTEND \asm volatile("mov %%rax, %%rsp" ::"a"(stack_extend_origin_memory_)); \free(stack_extend_memory_);int floor_pow(int n) { return n ? 31 - __builtin_clz(n) : 0; }#line 2 "cpplib/math/ACL_modint998244353.hpp"#include <cassert>#include <numeric>#include <type_traits>#ifdef _MSC_VER#include <intrin.h>#endif#include <utility>#ifdef _MSC_VER#include <intrin.h>#endifnamespace atcoder {namespace internal {constexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0)x += m;return x;}struct barrett {unsigned int _m;unsigned long long im;explicit barrett(unsigned int m): _m(m), im((unsigned long long)(-1) / m + 1) {}unsigned int umod() const { return _m; }unsigned int mul(unsigned int a, unsigned int b) const {unsigned long long z = a;z *= b;#ifdef _MSC_VERunsigned long long x;_umul128(z, im, &x);#elseunsigned long long x =(unsigned long long)(((unsigned __int128)(z)*im) >> 64);#endifunsigned long long y = x * _m;return (unsigned int)(z - y + (z < y ? _m : 0));}};constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1)return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1)r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}constexpr bool is_prime_constexpr(int n) {if (n <= 1)return false;if (n == 2 || n == 7 || n == 61)return true;if (n % 2 == 0)return false;long long d = n - 1;while (d % 2 == 0)d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0)return {b, 0};long long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u; // |m1 * u| <= |m1| * s <= bauto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}if (m0 < 0)m0 += b / s;return {s, m0};}constexpr int primitive_root_constexpr(int m) {if (m == 2)return 1;if (m == 167772161)return 3;if (m == 469762049)return 3;if (m == 754974721)return 11;if (m == 998244353)return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0)x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok)return g;}}template <int m> constexpr int primitive_root = primitive_root_constexpr(m);unsigned long long floor_sum_unsigned(unsigned long long n,unsigned long long m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m)break;n = (unsigned long long)(y_max / m);b = (unsigned long long)(y_max % m);std::swap(m, a);}return ans;}} // namespace internal} // namespace atcoder#include <cassert>#include <numeric>#include <type_traits>namespace atcoder {namespace internal {#ifndef _MSC_VERtemplate <class T>using is_signed_int128 =typename std::conditional<std::is_same<T, __int128_t>::value ||std::is_same<T, __int128>::value,std::true_type, std::false_type>::type;template <class T>using is_unsigned_int128 =typename std::conditional<std::is_same<T, __uint128_t>::value ||std::is_same<T, unsigned __int128>::value,std::true_type, std::false_type>::type;template <class T>using make_unsigned_int128 =typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,unsigned __int128>;template <class T>using is_integral =typename std::conditional<std::is_integral<T>::value ||is_signed_int128<T>::value ||is_unsigned_int128<T>::value,std::true_type, std::false_type>::type;template <class T>using is_signed_int =typename std::conditional<(is_integral<T>::value &&std::is_signed<T>::value) ||is_signed_int128<T>::value,std::true_type, std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<(is_integral<T>::value &&std::is_unsigned<T>::value) ||is_unsigned_int128<T>::value,std::true_type, std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>,typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,std::common_type<T>>::type>::type;#elsetemplate <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type, std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type, std::false_type>::type;template <class T>using to_unsigned =typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,std::common_type<T>>::type;#endiftemplate <class T>using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T>using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;} // namespace internal} // namespace atcodernamespace atcoder {namespace internal {struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internaltemplate <int m, std::enable_if_t<(1 <= m)> * = nullptr>struct static_modint : internal::static_modint_base {using mint = static_modint;public:static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T> * = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0)x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T> * = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val() const { return _v; }mint &operator++() {_v++;if (_v == umod())_v = 0;return *this;}mint &operator--() {if (_v == 0)_v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint &operator+=(const mint &rhs) {_v += rhs._v;if (_v >= umod())_v -= umod();return *this;}mint &operator-=(const mint &rhs) {_v -= rhs._v;if (_v >= umod())_v += umod();return *this;}mint &operator*=(const mint &rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1)r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint &lhs, const mint &rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint &lhs, const mint &rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint &lhs, const mint &rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint &lhs, const mint &rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint &lhs, const mint &rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint &lhs, const mint &rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;};template <int id> struct dynamic_modint : internal::modint_base {using mint = dynamic_modint;public:static int mod() { return (int)(bt.umod()); }static void set_mod(int m) {assert(1 <= m);bt = internal::barrett(m);}static mint raw(int v) {mint x;x._v = v;return x;}dynamic_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T> * = nullptr>dynamic_modint(T v) {long long x = (long long)(v % (long long)(mod()));if (x < 0)x += mod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T> * = nullptr>dynamic_modint(T v) {_v = (unsigned int)(v % mod());}unsigned int val() const { return _v; }mint &operator++() {_v++;if (_v == umod())_v = 0;return *this;}mint &operator--() {if (_v == 0)_v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint &operator+=(const mint &rhs) {_v += rhs._v;if (_v >= umod())_v -= umod();return *this;}mint &operator-=(const mint &rhs) {_v += mod() - rhs._v;if (_v >= umod())_v -= umod();return *this;}mint &operator*=(const mint &rhs) {_v = bt.mul(_v, rhs._v);return *this;}mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1)r *= x;x *= x;n >>= 1;}return r;}mint inv() const {auto eg = internal::inv_gcd(_v, mod());assert(eg.first == 1);return eg.second;}friend mint operator+(const mint &lhs, const mint &rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint &lhs, const mint &rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint &lhs, const mint &rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint &lhs, const mint &rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint &lhs, const mint &rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint &lhs, const mint &rhs) {return lhs._v != rhs._v;}private:unsigned int _v;static internal::barrett bt;static unsigned int umod() { return bt.umod(); }};template <int id> internal::barrett dynamic_modint<id>::bt(998244353);using modint998244353 = static_modint<998244353>;using modint1000000007 = static_modint<1000000007>;using modint = dynamic_modint<-1>;namespace internal {template <class T>using is_static_modint = std::is_base_of<internal::static_modint_base, T>;template <class T>using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;template <class> struct is_dynamic_modint : public std::false_type {};template <int id>struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};template <class T>using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;} // namespace internal} // namespace atcoderusing mint = atcoder::modint998244353;#line 4 "cpplib/math/ACL_modint_base.hpp"std::ostream &operator<<(std::ostream &lhs, const mint &rhs) noexcept {lhs << rhs.val();return lhs;}std::istream &operator>>(std::istream &lhs, mint &rhs) noexcept {long long x;lhs >> x;rhs = x;return lhs;}int MOD_NOW = -1;int FACT_TABLE_SIZE = 0;std::vector<mint> fact_table, fact_inv_table;void update(int x) {if (MOD_NOW != mint::mod() || FACT_TABLE_SIZE == 0) {fact_table.assign(1, 1);fact_inv_table.assign(1, 1);FACT_TABLE_SIZE = 1;MOD_NOW = mint::mod();}while (FACT_TABLE_SIZE <= x) {fact_table.resize(FACT_TABLE_SIZE * 2);fact_inv_table.resize(FACT_TABLE_SIZE * 2);for (int i = FACT_TABLE_SIZE; i < FACT_TABLE_SIZE * 2; ++i) {fact_table[i] = fact_table[i - 1] * i;}fact_inv_table[FACT_TABLE_SIZE * 2 - 1] =fact_table[FACT_TABLE_SIZE * 2 - 1].inv();for (int i = FACT_TABLE_SIZE * 2 - 2; i >= FACT_TABLE_SIZE; --i) {fact_inv_table[i] = fact_inv_table[i + 1] * (i + 1);}FACT_TABLE_SIZE *= 2;}}inline mint fact(int x) {assert(x >= 0);update(x);return fact_table[x];}inline mint fact_inv(int x) {assert(x >= 0);update(x);return fact_inv_table[x];}inline mint comb(int x, int y) {if (x < 0 || x < y || y < 0)return 0;return fact(x) * fact_inv(y) * fact_inv(x - y);}inline mint perm(int x, int y) { return fact(x) * fact_inv(x - y); }// x個のグループにy個のものを分ける場合の数inline mint multi_comb(int x, int y) {if (y == 0 && x >= 0)return 1;if (y < 0 || x <= 0)return 0;return comb(x + y - 1, y);}#line 3 "main.cpp"#include <algorithm>#include <array>#include <cassert>#include <type_traits>#include <vector>#ifdef _MSC_VER#include <intrin.h>#endif#if __cplusplus >= 202002L#include <bit>#endifnamespace atcoder {namespace internal {#if __cplusplus >= 202002Lusing std::bit_ceil;#elseunsigned int bit_ceil(unsigned int n) {unsigned int x = 1;while (x < (unsigned int)(n))x *= 2;return x;}#endifint countr_zero(unsigned int n) {#ifdef _MSC_VERunsigned long index;_BitScanForward(&index, n);return index;#elsereturn __builtin_ctz(n);#endif}constexpr int countr_zero_constexpr(unsigned int n) {int x = 0;while (!(n & (1 << x)))x++;return x;}} // namespace internal} // namespace atcodernamespace atcoder {namespace internal {template <class mint, int g = internal::primitive_root<mint::mod()>,internal::is_static_modint_t<mint> * = nullptr>struct fft_info {static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;fft_info() {root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);iroot[rank2] = root[rank2].inv();for (int i = rank2 - 1; i >= 0; i--) {root[i] = root[i + 1] * root[i + 1];iroot[i] = iroot[i + 1] * iroot[i + 1];}{mint prod = 1, iprod = 1;for (int i = 0; i <= rank2 - 2; i++) {rate2[i] = root[i + 2] * prod;irate2[i] = iroot[i + 2] * iprod;prod *= iroot[i + 2];iprod *= root[i + 2];}}{mint prod = 1, iprod = 1;for (int i = 0; i <= rank2 - 3; i++) {rate3[i] = root[i + 3] * prod;irate3[i] = iroot[i + 3] * iprod;prod *= iroot[i + 3];iprod *= root[i + 3];}}}};template <class mint, internal::is_static_modint_t<mint> * = nullptr>void butterfly(std::vector<mint> &a) {int n = int(a.size());int h = internal::countr_zero((unsigned int)n);static const fft_info<mint> info;int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformedwhile (len < h) {if (h - len == 1) {int p = 1 << (h - len - 1);mint rot = 1;for (int s = 0; s < (1 << len); s++) {int offset = s << (h - len);for (int i = 0; i < p; i++) {auto l = a[i + offset];auto r = a[i + offset + p] * rot;a[i + offset] = l + r;a[i + offset + p] = l - r;}if (s + 1 != (1 << len))rot *= info.rate2[countr_zero(~(unsigned int)(s))];}len++;} else {int p = 1 << (h - len - 2);mint rot = 1, imag = info.root[2];for (int s = 0; s < (1 << len); s++) {mint rot2 = rot * rot;mint rot3 = rot2 * rot;int offset = s << (h - len);for (int i = 0; i < p; i++) {auto mod2 = 1ULL * mint::mod() * mint::mod();auto a0 = 1ULL * a[i + offset].val();auto a1 = 1ULL * a[i + offset + p].val() * rot.val();auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();auto a1na3imag =1ULL * mint(a1 + mod2 - a3).val() * imag.val();auto na2 = mod2 - a2;a[i + offset] = a0 + a2 + a1 + a3;a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));a[i + offset + 2 * p] = a0 + na2 + a1na3imag;a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);}if (s + 1 != (1 << len))rot *= info.rate3[countr_zero(~(unsigned int)(s))];}len += 2;}}}template <class mint, internal::is_static_modint_t<mint> * = nullptr>void butterfly_inv(std::vector<mint> &a) {int n = int(a.size());int h = internal::countr_zero((unsigned int)n);static const fft_info<mint> info;int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformedwhile (len) {if (len == 1) {int p = 1 << (h - len);mint irot = 1;for (int s = 0; s < (1 << (len - 1)); s++) {int offset = s << (h - len + 1);for (int i = 0; i < p; i++) {auto l = a[i + offset];auto r = a[i + offset + p];a[i + offset] = l + r;a[i + offset + p] =(unsigned long long)(mint::mod() + l.val() - r.val()) *irot.val();;}if (s + 1 != (1 << (len - 1)))irot *= info.irate2[countr_zero(~(unsigned int)(s))];}len--;} else {int p = 1 << (h - len);mint irot = 1, iimag = info.iroot[2];for (int s = 0; s < (1 << (len - 2)); s++) {mint irot2 = irot * irot;mint irot3 = irot2 * irot;int offset = s << (h - len + 2);for (int i = 0; i < p; i++) {auto a0 = 1ULL * a[i + offset + 0 * p].val();auto a1 = 1ULL * a[i + offset + 1 * p].val();auto a2 = 1ULL * a[i + offset + 2 * p].val();auto a3 = 1ULL * a[i + offset + 3 * p].val();auto a2na3iimag =1ULL *mint((mint::mod() + a2 - a3) * iimag.val()).val();a[i + offset] = a0 + a1 + a2 + a3;a[i + offset + 1 * p] =(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();a[i + offset + 2 * p] =(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *irot2.val();a[i + offset + 3 * p] =(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *irot3.val();}if (s + 1 != (1 << (len - 2)))irot *= info.irate3[countr_zero(~(unsigned int)(s))];}len -= 2;}}}template <class mint, internal::is_static_modint_t<mint> * = nullptr>std::vector<mint> convolution_naive(const std::vector<mint> &a,const std::vector<mint> &b) {int n = int(a.size()), m = int(b.size());std::vector<mint> ans(n + m - 1);if (n < m) {for (int j = 0; j < m; j++) {for (int i = 0; i < n; i++) {ans[i + j] += a[i] * b[j];}}} else {for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {ans[i + j] += a[i] * b[j];}}}return ans;}template <class mint, internal::is_static_modint_t<mint> * = nullptr>std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {int n = int(a.size()), m = int(b.size());int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));a.resize(z);internal::butterfly(a);b.resize(z);internal::butterfly(b);for (int i = 0; i < z; i++) {a[i] *= b[i];}internal::butterfly_inv(a);a.resize(n + m - 1);mint iz = mint(z).inv();for (int i = 0; i < n + m - 1; i++)a[i] *= iz;return a;}} // namespace internaltemplate <class mint, internal::is_static_modint_t<mint> * = nullptr>std::vector<mint> convolution(std::vector<mint> &&a, std::vector<mint> &&b) {int n = int(a.size()), m = int(b.size());if (!n || !m)return {};int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));assert((mint::mod() - 1) % z == 0);if (std::min(n, m) <= 60)return convolution_naive(a, b);return internal::convolution_fft(a, b);}template <class mint, internal::is_static_modint_t<mint> * = nullptr>std::vector<mint> convolution(const std::vector<mint> &a,const std::vector<mint> &b) {int n = int(a.size()), m = int(b.size());if (!n || !m)return {};int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));assert((mint::mod() - 1) % z == 0);if (std::min(n, m) <= 60)return convolution_naive(a, b);return internal::convolution_fft(a, b);}template <unsigned int mod = 998244353, class T,std::enable_if_t<internal::is_integral<T>::value> * = nullptr>std::vector<T> convolution(const std::vector<T> &a, const std::vector<T> &b) {int n = int(a.size()), m = int(b.size());if (!n || !m)return {};using mint = static_modint<mod>;int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));assert((mint::mod() - 1) % z == 0);std::vector<mint> a2(n), b2(m);for (int i = 0; i < n; i++) {a2[i] = mint(a[i]);}for (int i = 0; i < m; i++) {b2[i] = mint(b[i]);}auto c2 = convolution(std::move(a2), std::move(b2));std::vector<T> c(n + m - 1);for (int i = 0; i < n + m - 1; i++) {c[i] = c2[i].val();}return c;}std::vector<long long> convolution_ll(const std::vector<long long> &a,const std::vector<long long> &b) {int n = int(a.size()), m = int(b.size());if (!n || !m)return {};static constexpr unsigned long long MOD1 = 754974721; // 2^24static constexpr unsigned long long MOD2 = 167772161; // 2^25static constexpr unsigned long long MOD3 = 469762049; // 2^26static constexpr unsigned long long M2M3 = MOD2 * MOD3;static constexpr unsigned long long M1M3 = MOD1 * MOD3;static constexpr unsigned long long M1M2 = MOD1 * MOD2;static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;static constexpr unsigned long long i1 =internal::inv_gcd(MOD2 * MOD3, MOD1).second;static constexpr unsigned long long i2 =internal::inv_gcd(MOD1 * MOD3, MOD2).second;static constexpr unsigned long long i3 =internal::inv_gcd(MOD1 * MOD2, MOD3).second;static constexpr int MAX_AB_BIT = 24;static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1,"MOD1 isn't enough to support an array length of 2^24.");static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1,"MOD2 isn't enough to support an array length of 2^24.");static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1,"MOD3 isn't enough to support an array length of 2^24.");assert(n + m - 1 <= (1 << MAX_AB_BIT));auto c1 = convolution<MOD1>(a, b);auto c2 = convolution<MOD2>(a, b);auto c3 = convolution<MOD3>(a, b);std::vector<long long> c(n + m - 1);for (int i = 0; i < n + m - 1; i++) {unsigned long long x = 0;x += (c1[i] * i1) % MOD1 * M2M3;x += (c2[i] * i2) % MOD2 * M1M3;x += (c3[i] * i3) % MOD3 * M1M2;long long diff =c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));if (diff < 0)diff += MOD1;static constexpr unsigned long long offset[5] = {0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};x -= offset[diff % 5];c[i] = x;}return c;}} // namespace atcoder#line 2 "cpplib/math/poly.hpp"using poly = vector<mint>;int size(const poly &x) { return x.size(); }poly shrink(poly x) {while (size(x) >= 1 && x.back().val() == 0)x.pop_back();return x;}poly pre(const poly &x, int n) {auto res = x;res.resize(n);return res;}poly operator+(const poly &x, const poly &y) {poly res(max(x.size(), y.size()));rep(i, 0, x.size()) res[i] += x[i];rep(i, 0, y.size()) res[i] += y[i];return res;}poly &operator*=(poly &x, const mint &y) {rep(i, 0, x.size()) x[i] *= y;return x;}poly operator*(poly x, const mint &y) { return x *= y; }poly operator-(const poly &x) {poly res(x.size());rep(i, 0, x.size()) res[i] = -x[i];return res;}poly operator-(const poly &x, const poly &y) { return x + (-y); }poly operator*(const poly &x, const poly &y) {return atcoder::convolution(x, y);}// poly operator*(const poly&x,const poly&y){// poly res(x.size()+y.size()-1);// for(int i=0;i<x.size();++i){// for(int j=0;j<y.size();++j){// res[i+j]+=x[i]*y[j];// }// }// return res;// }// poly operator*(const poly&x,const poly&y){// return convolution(x,y);// }poly &operator+=(poly &x, const poly &y) { return x = (x + y); }poly &operator-=(poly &x, const poly &y) { return x = (x - y); }poly &operator*=(poly &x, const poly &y) { return x = (x * y); }istream &operator>>(istream &in, poly &y) {int n = size(y);rep(i, 0, n) in >> y[i];return in;}ostream &operator<<(ostream &out, const poly &y) {int n = size(y);rep(i, 0, n) {if (i)out << ' ';out << y[i].val();}return out;}poly diff(const poly &x) {int n = size(x);poly res(n - 1);rep(i, 0, n - 1) res[i] = x[i + 1] * (i + 1);return res;}poly integrate(const poly &x) {int n = size(x);poly res(n + 1);rep(i, 1, n + 1) res[i] = x[i - 1] / i;return res;}poly inv(const poly &x) {int n = size(x);if (n == 1)return poly{x[0].inv()};auto c = inv(pre(x, (n + 1) / 2));return pre(c * (poly{2} - c * x), n);}poly log(const poly &x) {int n = size(x);assert(x[0].val() == 1);return pre(integrate(diff(x) * inv(x)), n);}poly exp(const poly &x) {assert(x[0].val() == 0);int n = size(x);if (n == 1)return poly{1};auto c = exp(pre(x, (n + 1) / 2));return pre(c * (poly{1} - log(pre(c, n)) + x), n);}pair<poly, poly> divmod(const poly &a, const poly &b) {assert(!b.empty());if (b.back().val() == 0)return divmod(a, shrink(b));if (a.empty())return make_pair(poly{}, poly{});if (a.back().val() == 0)return divmod(shrink(a), b);int n = max(0, size(a) - size(b) + 1);if (n == 0)return make_pair(poly{}, a);auto c = a;auto d = b;reverse(c.begin(), c.end());reverse(d.begin(), d.end());d.resize(n);c *= inv(d);c.resize(n);reverse(c.begin(), c.end());return make_pair(c, pre(a - c * b, (int)b.size() - 1));}mint eval(const poly &a, const mint &x) {int n = a.size();mint ans = 0;for (int i = n - 1; i >= 0; --i) {ans = ans * x + a[i];}return ans;}poly multipoint_evalution(const poly &a, const poly &b) {int n = b.size();vector<poly> v(n * 2);rep(i, 0, n) { v[i + n] = poly{-mint(b[i]), mint(1)}; }for (int i = n - 1; i >= 1; --i) {v[i] = v[i * 2] * v[i * 2 + 1];}poly ans(n);v[0] = a;rep(i, 1, n * 2) {v[i] = divmod(v[i / 2], v[i]).second;if (i >= n)ans[i - n] = v[i][0];}return ans;}mint difference_product(poly a) {reverse(a.begin(), a.end());int n = a.size();vector<poly> v(n * 2), tb2(n * 2);vector<poly> tb(n * 2);int sz = 1;while (sz < n)sz *= 2;rep(i, 0, n) { v[(i + sz - n) % n + n] = poly{-a[i], mint(1)}; }rep(i, 0, n) { tb[(i + sz - n) % n + n] = poly{a[i], -mint(1)}; }for (int i = n - 1; i >= 1; --i) {v[i] = v[i * 2] * v[i * 2 + 1];}for (int i = n - 1; i >= 1; --i) {tb[i] = tb[i * 2] * tb[i * 2 + 1];}mint ans = 1;tb2[1] = poly{1};auto dfs = [&](auto dfs, lint i) -> void {if (i >= n) {return;}tb2[i * 2] = divmod(tb2[i], v[i * 2]).second;dfs(dfs, i * 2);tb2[i * 2 + 1] = divmod(tb2[i] * tb[i * 2], v[i * 2 + 1]).second;dfs(dfs, i * 2 + 1);};dfs(dfs, 1);rep(i, 0, n) {// cerr<<tb2[i+n].size()<<endl;ans *= tb2[i + n].size() ? tb2[i + n][0] : mint(0);}return ans;}vector<mint> composition(vector<mint> f, vector<mint> g) {int n = f.size(), m = g.size();assert(n == m);vector<mint> res(n);int b = ceil(sqrt(n));vector<vector<mint>> g_pow(b + 1);g_pow[0] = vector<mint>{1};for (int i = 0; i < b; ++i) {g_pow[i + 1] = g_pow[i] * g;g_pow[i + 1].resize(n);}vector<mint> g_pow2 = vector<mint>{1};for (int i = 0; i < n; i += b) {vector<mint> tmp;for (int j = i; j < std::min(i + b, n); ++j) {tmp += g_pow[j - i] * f[j];}res += tmp * g_pow2;res.resize(n);g_pow2 *= g_pow[b];g_pow2.resize(n);}return res;}#line 5 "main.cpp"int main() {lint n;string s;cin >> n >> s;vector<array<poly, 4>> v(n * 2);lint sz = 1;while (sz < n)sz *= 2;rep(i, n) {if (s[i] == 'R') {v[(i + sz + n) % n + n][0] = poly{0, 1};// v[(i+sz+n)%n+n][1]=poly{1};// v[(i+sz+n)%n+n][2]=poly{1};} else {v[(i + sz + n) % n + n][3] = poly{0, 1};// v[(i+sz+n)%n+n][1]=poly{1};// v[(i+sz+n)%n+n][2]=poly{1};}}auto mul = [&](auto a, auto b) {array<poly, 4> ret;rep(i, 2) rep(j, 2) rep(k, 2) {ret[i * 2 + k] += a[i * 2 + j] * b[(1 - j) * 2 + k];}rep(i, 4) ret[i] += a[i];rep(i, 4) ret[i] += b[i];return ret;};rrep(i, 1, n) {v[i] = mul(v[i * 2], v[i * 2 + 1]);// debug2(v[i]);}poly ans;rep(i, 4) { ans += v[1][i]; }ans.erase(ans.begin());while (ans.size() < n)ans.emplace_back(0);rep(i, n) { cout << ans[i] << endl; }}