結果
問題 | No.2519 Coins in Array |
ユーザー | suisen |
提出日時 | 2023-10-27 22:12:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 88 ms / 2,000 ms |
コード長 | 25,764 bytes |
コンパイル時間 | 2,573 ms |
コンパイル使用メモリ | 223,220 KB |
実行使用メモリ | 12,904 KB |
最終ジャッジ日時 | 2024-09-25 14:16:36 |
合計ジャッジ時間 | 6,981 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
8,096 KB |
testcase_01 | AC | 4 ms
8,124 KB |
testcase_02 | AC | 4 ms
8,080 KB |
testcase_03 | AC | 4 ms
8,120 KB |
testcase_04 | AC | 5 ms
8,060 KB |
testcase_05 | AC | 5 ms
8,112 KB |
testcase_06 | AC | 5 ms
8,004 KB |
testcase_07 | AC | 5 ms
8,076 KB |
testcase_08 | AC | 6 ms
8,208 KB |
testcase_09 | AC | 5 ms
8,120 KB |
testcase_10 | AC | 5 ms
8,112 KB |
testcase_11 | AC | 5 ms
8,008 KB |
testcase_12 | AC | 5 ms
8,004 KB |
testcase_13 | AC | 6 ms
8,180 KB |
testcase_14 | AC | 5 ms
8,236 KB |
testcase_15 | AC | 4 ms
8,152 KB |
testcase_16 | AC | 4 ms
8,100 KB |
testcase_17 | AC | 5 ms
8,272 KB |
testcase_18 | AC | 4 ms
8,144 KB |
testcase_19 | AC | 5 ms
8,124 KB |
testcase_20 | AC | 5 ms
8,092 KB |
testcase_21 | AC | 4 ms
8,112 KB |
testcase_22 | AC | 5 ms
8,072 KB |
testcase_23 | AC | 79 ms
11,524 KB |
testcase_24 | AC | 68 ms
11,344 KB |
testcase_25 | AC | 5 ms
7,944 KB |
testcase_26 | AC | 4 ms
8,124 KB |
testcase_27 | AC | 88 ms
12,904 KB |
testcase_28 | AC | 86 ms
12,684 KB |
testcase_29 | AC | 88 ms
12,736 KB |
testcase_30 | AC | 78 ms
12,180 KB |
testcase_31 | AC | 18 ms
8,940 KB |
testcase_32 | AC | 34 ms
9,680 KB |
testcase_33 | AC | 62 ms
11,380 KB |
testcase_34 | AC | 33 ms
9,844 KB |
testcase_35 | AC | 57 ms
11,052 KB |
testcase_36 | AC | 26 ms
9,404 KB |
testcase_37 | AC | 15 ms
8,788 KB |
testcase_38 | AC | 38 ms
9,792 KB |
testcase_39 | AC | 29 ms
9,456 KB |
testcase_40 | AC | 47 ms
10,912 KB |
ソースコード
#include <bits/stdc++.h> namespace suisen { template <class T> bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } template <class T> bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template <class T> constexpr int pow_m1(T n) { return -(n & 1) | 1; } template <class T> constexpr T fld(const T x, const T y) { T q = x / y, r = x % y; return q - ((x ^ y) < 0 and (r != 0)); } template <class T> constexpr T cld(const T x, const T y) { T q = x / y, r = x % y; return q + ((x ^ y) > 0 and (r != 0)); } } namespace suisen::macro { #define IMPL_REPITER(cond) auto& begin() { return *this; } auto end() { return nullptr; } auto& operator*() { return _val; } auto& operator++() { return _val += _step, *this; } bool operator!=(std::nullptr_t) { return cond; } template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> = nullptr> struct rep_impl { Int _val; const Int _end, _step; rep_impl(Int n) : rep_impl(0, n) {} rep_impl(IntL l, Int r, IntStep step = 1) : _val(l), _end(r), _step(step) {} IMPL_REPITER((_val < _end)) }; template <class Int, class IntL = Int, class IntStep = Int, std::enable_if_t<(std::is_signed_v<Int> == std::is_signed_v<IntL>), std::nullptr_t> = nullptr> struct rrep_impl { Int _val; const Int _end, _step; rrep_impl(Int n) : rrep_impl(0, n) {} rrep_impl(IntL l, Int r) : _val(r - 1), _end(l), _step(-1) {} rrep_impl(IntL l, Int r, IntStep step) : _val(l + fld<Int>(r - l - 1, step) * step), _end(l), _step(-step) {} IMPL_REPITER((_val >= _end)) }; template <class Int, class IntStep = Int> struct repinf_impl { Int _val; const Int _step; repinf_impl(Int l, IntStep step = 1) : _val(l), _step(step) {} IMPL_REPITER((true)) }; #undef IMPL_REPITER } #include <iostream> #include <limits> #include <type_traits> namespace suisen { template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>; template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; }; template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; }; template <typename T> static constexpr int bitnum_v = bitnum<T>::value; template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; }; template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; template <typename T, typename = void> struct rec_value_type { using type = T; }; template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> { using type = typename rec_value_type<typename T::value_type>::type; }; template <typename T> using rec_value_type_t = typename rec_value_type<T>::type; template <typename T> class is_iterable { template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval<T>()))::value; }; template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value; template <typename T> class is_writable { template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval<T>()))::value; }; template <typename T> static constexpr bool is_writable_v = is_writable<T>::value; template <typename T> class is_readable { template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval<T>()))::value; }; template <typename T> static constexpr bool is_readable_v = is_readable<T>::value; } // namespace suisen namespace suisen::io { template <typename IStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::istream, std::remove_reference_t<IStream>>, std::negation<std::is_const<std::remove_reference_t<IStream>>>>, std::nullptr_t> = nullptr> struct InputStream { private: using istream_type = std::remove_reference_t<IStream>; IStream is; struct { InputStream* is; template <typename T> operator T() { T e; *is >> e; return e; } } _reader{ this }; public: template <typename IStream_> InputStream(IStream_ &&is) : is(std::move(is)) {} template <typename IStream_> InputStream(IStream_ &is) : is(is) {} template <typename T> InputStream& operator>>(T& e) { if constexpr (suisen::is_readable_v<T>) is >> e; else _read(e); return *this; } auto read() { return _reader; } template <typename Head, typename... Tail> void read(Head& head, Tail &...tails) { ((*this >> head) >> ... >> tails); } istream_type& get_stream() { return is; } private: static __uint128_t _stou128(const std::string& s) { __uint128_t ret = 0; for (char c : s) if ('0' <= c and c <= '9') ret = 10 * ret + c - '0'; return ret; } static __int128_t _stoi128(const std::string& s) { return (s[0] == '-' ? -1 : +1) * _stou128(s); } void _read(__uint128_t& v) { v = _stou128(std::string(_reader)); } void _read(__int128_t& v) { v = _stoi128(std::string(_reader)); } template <typename T, typename U> void _read(std::pair<T, U>& a) { *this >> a.first >> a.second; } template <size_t N = 0, typename ...Args> void _read(std::tuple<Args...>& a) { if constexpr (N < sizeof...(Args)) *this >> std::get<N>(a), _read<N + 1>(a); } template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr> void _read(Iterable& a) { for (auto& e : a) *this >> e; } }; template <typename IStream> InputStream(IStream &&) -> InputStream<IStream>; template <typename IStream> InputStream(IStream &) -> InputStream<IStream&>; InputStream cin{ std::cin }; auto read() { return cin.read(); } template <typename Head, typename... Tail> void read(Head& head, Tail &...tails) { cin.read(head, tails...); } } // namespace suisen::io namespace suisen { using io::read; } // namespace suisen namespace suisen::io { template <typename OStream, std::enable_if_t<std::conjunction_v<std::is_base_of<std::ostream, std::remove_reference_t<OStream>>, std::negation<std::is_const<std::remove_reference_t<OStream>>>>, std::nullptr_t> = nullptr> struct OutputStream { private: using ostream_type = std::remove_reference_t<OStream>; OStream os; public: template <typename OStream_> OutputStream(OStream_ &&os) : os(std::move(os)) {} template <typename OStream_> OutputStream(OStream_ &os) : os(os) {} template <typename T> OutputStream& operator<<(const T& e) { if constexpr (suisen::is_writable_v<T>) os << e; else _print(e); return *this; } void print() { *this << '\n'; } template <typename Head, typename... Tail> void print(const Head& head, const Tail &...tails) { *this << head, ((*this << ' ' << tails), ...), *this << '\n'; } template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr> void print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") { for (auto it = v.begin(); it != v.end();) if (*this << *it; ++it != v.end()) *this << sep; *this << end; } ostream_type& get_stream() { return os; } private: void _print(__uint128_t value) { char buffer[41], *d = std::end(buffer); do *--d = '0' + (value % 10), value /= 10; while (value); os.rdbuf()->sputn(d, std::end(buffer) - d); } void _print(__int128_t value) { if (value < 0) *this << '-'; _print(__uint128_t(value < 0 ? -value : value)); } template <typename T, typename U> void _print(const std::pair<T, U>& a) { *this << a.first << ' ' << a.second; } template <size_t N = 0, typename ...Args> void _print(const std::tuple<Args...>& a) { if constexpr (N < std::tuple_size_v<std::tuple<Args...>>) { if constexpr (N) *this << ' '; *this << std::get<N>(a), _print<N + 1>(a); } } template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr> void _print(const Iterable& a) { print_all(a, " ", ""); } }; template <typename OStream_> OutputStream(OStream_ &&) -> OutputStream<OStream_>; template <typename OStream_> OutputStream(OStream_ &) -> OutputStream<OStream_&>; OutputStream cout{ std::cout }, cerr{ std::cerr }; template <typename... Args> void print(const Args &... args) { cout.print(args...); } template <typename Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr> void print_all(const Iterable& v, const std::string& sep = " ", const std::string& end = "\n") { cout.print_all(v, sep, end); } } // namespace suisen::io namespace suisen { using io::print, io::print_all; } // namespace suisen namespace suisen { template <class T, class ToKey, class CompKey = std::less<>, std::enable_if_t<std::conjunction_v<std::is_invocable<ToKey, T>, std::is_invocable_r<bool, CompKey, std::invoke_result_t<ToKey, T>, std::invoke_result_t<ToKey, T>>>, std::nullptr_t> = nullptr> auto comparator(const ToKey& to_key, const CompKey& comp_key = std::less<>()) { return [=](const T& x, const T& y) { return comp_key(to_key(x), to_key(y)); }; } template <class Compare, std::enable_if_t<std::is_invocable_r_v<bool, Compare, int, int>, std::nullptr_t> = nullptr> std::vector<int> sorted_indices(int n, const Compare& compare) { std::vector<int> p(n); return std::iota(p.begin(), p.end(), 0), std::sort(p.begin(), p.end(), compare), p; } template <class ToKey, std::enable_if_t<std::is_invocable_v<ToKey, int>, std::nullptr_t> = nullptr> std::vector<int> sorted_indices(int n, const ToKey& to_key) { return sorted_indices(n, comparator<int>(to_key)); } template <class T, class Comparator> auto priority_queue_with_comparator(const Comparator& comparator) { return std::priority_queue<T, std::vector<T>, Comparator>{ comparator }; } template <class Iterable, std::enable_if_t<suisen::is_iterable_v<Iterable>, std::nullptr_t> = nullptr> void sort_unique_erase(Iterable& a) { std::sort(a.begin(), a.end()), a.erase(std::unique(a.begin(), a.end()), a.end()); } template <size_t D> struct Dim : std::array<int, D> { template <typename ...Ints> Dim(const Ints& ...ns) : std::array<int, D>::array{ static_cast<int>(ns)... } {} }; template <typename ...Ints> Dim(const Ints& ...) -> Dim<sizeof...(Ints)>; template <class T, size_t D, size_t I = 0> auto ndvec(const Dim<D> &ns, const T& value = {}) { if constexpr (I + 1 < D) { return std::vector(ns[I], ndvec<T, D, I + 1>(ns, value)); } else { return std::vector<T>(ns[I], value); } } } namespace suisen { using int128 = __int128_t; using uint128 = __uint128_t; template <class T> using min_priority_queue = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T> using max_priority_queue = std::priority_queue<T, std::vector<T>, std::less<T>>; } namespace suisen { const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; } #ifdef LOCAL # define debug(...) debug_impl(#__VA_ARGS__, __VA_ARGS__) template <class H, class... Ts> void debug_impl(const char* s, const H& h, const Ts&... t) { suisen::io::cerr << "[\033[32mDEBUG\033[m] " << s << ": " << h, ((suisen::io::cerr << ", " << t), ..., (suisen::io::cerr << "\n")); } #else # define debug(...) void(0) #endif #define FOR(e, v) for (auto &&e : v) #define CFOR(e, v) for (const auto &e : v) #define REP(i, ...) CFOR(i, suisen::macro::rep_impl(__VA_ARGS__)) #define RREP(i, ...) CFOR(i, suisen::macro::rrep_impl(__VA_ARGS__)) #define REPINF(i, ...) CFOR(i, suisen::macro::repinf_impl(__VA_ARGS__)) #define LOOP(n) for ([[maybe_unused]] const auto& _ : suisen::macro::rep_impl(n)) #define ALL(iterable) std::begin(iterable), std::end(iterable) using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_{}; constexpr int iinf = std::numeric_limits<int>::max() / 2; constexpr long long linf = std::numeric_limits<long long>::max() / 2; #include <cassert> #include <cmath> #include <vector> #include <cstdint> namespace suisen::internal::sieve { constexpr std::uint8_t K = 8; constexpr std::uint8_t PROD = 2 * 3 * 5; constexpr std::uint8_t RM[K] = { 1, 7, 11, 13, 17, 19, 23, 29 }; constexpr std::uint8_t DR[K] = { 6, 4, 2, 4, 2, 4, 6, 2 }; constexpr std::uint8_t DF[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 }, { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 }, { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 }, }; constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 }; constexpr std::uint8_t DFP[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 8 }, { 8, 8, 8, 0, 8, 8, 8, 8 }, { 16, 16, 0, 16, 0, 16, 16, 8 }, { 24, 8, 8, 16, 8, 8, 24, 8 }, { 24, 24, 8, 16, 8, 24, 24, 8 }, { 32, 16, 16, 16, 16, 16, 32, 8 }, { 40, 24, 8, 32, 8, 24, 40, 8 }, { 48, 32, 16, 32, 16, 32, 48, 8 }, }; constexpr std::uint8_t MASK[K][K] = { { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 }, { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 }, { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 }, { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }, }; constexpr std::uint8_t OFFSET[K][K] = { { 0, 1, 2, 3, 4, 5, 6, 7, }, { 1, 5, 4, 0, 7, 3, 2, 6, }, { 2, 4, 0, 6, 1, 7, 3, 5, }, { 3, 0, 6, 5, 2, 1, 7, 4, }, { 4, 7, 1, 2, 5, 6, 0, 3, }, { 5, 3, 7, 1, 6, 0, 4, 2, }, { 6, 2, 3, 7, 0, 4, 5, 1, }, { 7, 6, 5, 4, 3, 2, 1, 0, }, }; constexpr std::uint8_t mask_to_index(const std::uint8_t bits) { switch (bits) { case 1 << 0: return 0; case 1 << 1: return 1; case 1 << 2: return 2; case 1 << 3: return 3; case 1 << 4: return 4; case 1 << 5: return 5; case 1 << 6: return 6; case 1 << 7: return 7; default: assert(false); } } } // namespace suisen::internal::sieve namespace suisen { template <unsigned int N> class SimpleSieve { private: static constexpr unsigned int siz = N / internal::sieve::PROD + 1; static std::uint8_t flag[siz]; public: SimpleSieve() { using namespace internal::sieve; flag[0] |= 1; unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) { const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp]; unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD; for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) { flag[kr] |= MASK[mp][mq]; } } } } std::vector<int> prime_list(unsigned int max_val = N) const { using namespace internal::sieve; std::vector<int> res { 2, 3, 5 }; res.reserve(max_val / 25); for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) { for (uint8_t f = ~flag[i]; f;) { uint8_t g = f & -f; res.push_back(offset + RM[mask_to_index(g)]); f ^= g; } } while (res.size() and (unsigned int) res.back() > max_val) res.pop_back(); return res; } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0; case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0; case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0; case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0; case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0; case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0; case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0; case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0; default: return false; } } } }; template <unsigned int N> std::uint8_t SimpleSieve<N>::flag[SimpleSieve<N>::siz]; template <unsigned int N> class Sieve { private: static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD; static unsigned int pf[base_max + internal::sieve::K]; public: Sieve() { using namespace internal::sieve; pf[0] = 1; unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { const int base_i = kp * K, base_act_i = kp * PROD; for (int mp = 0; mp < K; ++mp) { const int m = RM[mp], i = base_i + mp; if (pf[i] == 0) { unsigned int act_i = base_act_i + m; unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K; for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) { pf[base_k + OFFSET[mp][mq]] = act_i; } } } } } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return pf[p / PROD * K + 0] == 0; case RM[1]: return pf[p / PROD * K + 1] == 0; case RM[2]: return pf[p / PROD * K + 2] == 0; case RM[3]: return pf[p / PROD * K + 3] == 0; case RM[4]: return pf[p / PROD * K + 4] == 0; case RM[5]: return pf[p / PROD * K + 5] == 0; case RM[6]: return pf[p / PROD * K + 6] == 0; case RM[7]: return pf[p / PROD * K + 7] == 0; default: return false; } } } int prime_factor(const unsigned int p) const { using namespace internal::sieve; switch (p % PROD) { case 0: case 2: case 4: case 6: case 8: case 10: case 12: case 14: case 16: case 18: case 20: case 22: case 24: case 26: case 28: return 2; case 3: case 9: case 15: case 21: case 27: return 3; case 5: case 25: return 5; case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p; case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p; case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p; case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p; case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p; case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p; case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p; case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p; default: assert(false); } } /** * Returns a vector of `{ prime, index }`. */ std::vector<std::pair<int, int>> factorize(unsigned int n) const { assert(0 < n and n <= N); std::vector<std::pair<int, int>> prime_powers; while (n > 1) { int p = prime_factor(n), c = 0; do { n /= p, ++c; } while (n % p == 0); prime_powers.emplace_back(p, c); } return prime_powers; } /** * Returns the divisors of `n`. * It is NOT guaranteed that the returned vector is sorted. */ std::vector<int> divisors(unsigned int n) const { assert(0 < n and n <= N); std::vector<int> divs { 1 }; for (auto [prime, index] : factorize(n)) { int sz = divs.size(); for (int i = 0; i < sz; ++i) { int d = divs[i]; for (int j = 0; j < index; ++j) { divs.push_back(d *= prime); } } } return divs; } }; template <unsigned int N> unsigned int Sieve<N>::pf[Sieve<N>::base_max + internal::sieve::K]; } // namespace suisen Sieve<200010> sieve; long long f(long long x, long long y) { if (gcd(x, y) != 1) return 0; return (x - 1) * (y - 1); } void solve() { int n; read(n); vector<long long> a(n); read(a); vector<vector<int>> mul(200010); REP(i, n) { if (a[i] == 0) { print(0); if (i == 0) { print(i + 1, 2); } else { print(i + 1, 1); } int cur = n - 2; LOOP(n - 2) { print(1, cur + 1); --cur; } return; } for (auto [p, q] : sieve.factorize(a[i])) { mul[p].push_back(i); } } REP(p, 200010) { if (mul[p].size() >= 2) { int a = mul[p][0], b = mul[p][1]; print(0); print(a + 1, b + 1); int cur = n - 2; LOOP(n - 2) { print(1, cur + 1); --cur; } return; } } if (n == 2) { print(f(a[0], a[1])); print(1, 2); return; } int evn = -1; REP(i, n) { if (a[i] % 2 == 0) evn = i; } if (evn != -1) { int i = 0, j = 1; if (i == evn) i = 2; if (j == evn) j = 2; print(0); evn -= (i < evn) + (j < evn); print(i + 1, j + 1); print(evn + 1, n - 1); int cur = n - 3; LOOP(n - 3) { print(1, cur + 1); --cur; } return; } if (n == 3) { long long m = linf; vector<pair<int, int>> ans; auto dfs = [&](auto dfs, vector<long long> a, vector<pair<int, int>> op) { const int n = a.size(); if (n == 1) { if (chmin(m, a[0])) { ans = op; } return; } REP(i, n) REP(j, i) { vector<long long> na; REP(k, n) if (k != i and k != j) na.push_back(a[k]); na.push_back(f(a[i], a[j])); op.emplace_back(i, j); dfs(dfs, na, op); op.pop_back(); } }; dfs(dfs, a, {}); print(m); for (auto [i, j] : ans) print(i + 1, j + 1); return; } print(0); print(1, 2); print(1, 2); print(n - 3, n - 2); int cur = n - 4; LOOP(n - 4) { print(1, cur + 1); --cur; } } int main() { int test_case_num = 1; // read(test_case_num); LOOP(test_case_num) solve(); return 0; }