結果
問題 | No.2524 Stripes |
ユーザー |
![]() |
提出日時 | 2023-10-27 22:40:05 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 996 ms / 7,000 ms |
コード長 | 9,182 bytes |
コンパイル時間 | 2,962 ms |
コンパイル使用メモリ | 242,244 KB |
最終ジャッジ日時 | 2025-02-17 15:30:15 |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 25 |
ソースコード
// #define _GLIBCXX_DEBUG#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < int(n); i++)#define per(i, n) for (int i = (n)-1; 0 <= i; i--)#define rep2(i, l, r) for (int i = (l); i < int(r); i++)#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)#define each(e, v) for (auto& e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()template <typename T> void print(const vector<T>& v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}using ll = long long;using pii = pair<int, int>;using pll = pair<ll, ll>;template <typename T> bool chmax(T& x, const T& y) {return (x < y) ? (x = y, true) : false;}template <typename T> bool chmin(T& x, const T& y) {return (x > y) ? (x = y, true) : false;}template <class T>using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;template <class T> using maxheap = std::priority_queue<T>;template <typename T> int lb(const vector<T>& v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T> int ub(const vector<T>& v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T> void rearrange(vector<T>& v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}// __int128_t gcd(__int128_t a, __int128_t b) {// if (a == 0)// return b;// if (b == 0)// return a;// __int128_t cnt = a % b;// while (cnt != 0) {// a = b;// b = cnt;// cnt = a % b;// }// return b;// }struct Union_Find_Tree {vector<int> data;const int n;int cnt;Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}int root(int x) {if (data[x] < 0) return x;return data[x] = root(data[x]);}int operator[](int i) { return root(i); }bool unite(int x, int y) {x = root(x), y = root(y);if (x == y) return false;if (data[x] > data[y]) swap(x, y);data[x] += data[y], data[y] = x;cnt--;return true;}int size(int x) { return -data[root(x)]; }int count() { return cnt; };bool same(int x, int y) { return root(x) == root(y); }void clear() {cnt = n;fill(begin(data), end(data), -1);}};template <int mod> struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int& operator+=(const Mod_Int& p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int& operator-=(const Mod_Int& p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int& operator*=(const Mod_Int& p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int& operator/=(const Mod_Int& p) {*this *= p.inverse();return *this;}Mod_Int& operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int& operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int& p) const { return x == p.x; }bool operator!=(const Mod_Int& p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream& operator<<(ostream& os, const Mod_Int& p) {return os << p.x;}friend istream& operator>>(istream& is, Mod_Int& p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};ll mpow2(ll x, ll n, ll mod) {ll ans = 1;x %= mod;while (n != 0) {if (n & 1) ans = ans * x % mod;x = x * x % mod;n = n >> 1;}ans %= mod;return ans;}template <typename T> T modinv(T a, const T& m) {T b = m, u = 1, v = 0;while (b > 0) {T t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return u >= 0 ? u % m : (m - (-u) % m) % m;}ll divide_int(ll a, ll b) {if (b < 0) a = -a, b = -b;return (a >= 0 ? a / b : (a - b + 1) / b);}// const int MOD = 1000000007;const int MOD = 998244353;using mint = Mod_Int<MOD>;// ----- library -------template <typename T>struct Number_Theoretic_Transform {static int max_base;static T root;static vector<T> r, ir;Number_Theoretic_Transform() {}static void init() {if (!r.empty()) return;int mod = T::get_mod();int tmp = mod - 1;root = 2;while (root.pow(tmp >> 1) == 1) root++;max_base = 0;while (tmp % 2 == 0) tmp >>= 1, max_base++;r.resize(max_base), ir.resize(max_base);for (int i = 0; i < max_base; i++) {r[i] = -root.pow((mod - 1) >> (i + 2)); // r[i] := 1 の 2^(i+2) 乗根ir[i] = r[i].inverse(); // ir[i] := 1/r[i]}}static void ntt(vector<T> &a) {init();int n = a.size();assert((n & (n - 1)) == 0);assert(n <= (1 << max_base));for (int k = n; k >>= 1;) {T w = 1;for (int s = 0, t = 0; s < n; s += 2 * k) {for (int i = s, j = s + k; i < s + k; i++, j++) {T x = a[i], y = w * a[j];a[i] = x + y, a[j] = x - y;}w *= r[__builtin_ctz(++t)];}}}static void intt(vector<T> &a) {init();int n = a.size();assert((n & (n - 1)) == 0);assert(n <= (1 << max_base));for (int k = 1; k < n; k <<= 1) {T w = 1;for (int s = 0, t = 0; s < n; s += 2 * k) {for (int i = s, j = s + k; i < s + k; i++, j++) {T x = a[i], y = a[j];a[i] = x + y, a[j] = w * (x - y);}w *= ir[__builtin_ctz(++t)];}}T inv = T(n).inverse();for (auto &e : a) e *= inv;}static vector<T> convolve(vector<T> a, vector<T> b) {if (a.empty() || b.empty()) return {};if (min(a.size(), b.size()) < 40) {int n = a.size(), m = b.size();vector<T> c(n + m - 1, 0);for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) c[i + j] += a[i] * b[j];}return c;}int k = (int)a.size() + (int)b.size() - 1, n = 1;while (n < k) n <<= 1;a.resize(n), b.resize(n);ntt(a), ntt(b);for (int i = 0; i < n; i++) a[i] *= b[i];intt(a), a.resize(k);return a;}};template <typename T>int Number_Theoretic_Transform<T>::max_base = 0;template <typename T>T Number_Theoretic_Transform<T>::root = T();template <typename T>vector<T> Number_Theoretic_Transform<T>::r = vector<T>();template <typename T>vector<T> Number_Theoretic_Transform<T>::ir = vector<T>();// ----- library -------int main() {ios::sync_with_stdio(false);std::cin.tie(nullptr);cout << fixed << setprecision(15);Number_Theoretic_Transform<mint> ntt;int n;string s;cin >> n >> s;vector<int> a(n);rep(i, n) a[i] = (s[i] == 'R');auto solve = [&](int l, int r, auto &&solve) ->vector<vector<mint>> {int len = r - l;vector<vector<mint>> ret(4, vector<mint>(len + 1, 0));if (r - l == 1) {ret[a[l] * 3][1] = 1;return ret;}int c = (l + r) / 2;auto retl = solve(l, c, solve), retr = solve(c, r, solve);rep(i, 4) {rep(j, sz(retl[i])) ret[i][j] += retl[i][j];rep(j, sz(retr[i])) ret[i][j] += retr[i][j];}rep(i, 2) rep(j, 2) rep(k, 2) {int x = i + k * 2, y = (k ^ 1) + j * 2, z = i + j * 2;auto f = ntt.convolve(retl[x], retr[y]);rep(idx, len + 1) ret[z][idx] += f[idx];}return ret;};auto ret = solve(0, n, solve);rep2(i, 1, n + 1) {mint ans = 0;rep(j, 4) ans += ret[j][i];cout << ans << '\n';}}