結果
問題 | No.2523 Trick Flower |
ユーザー | hitonanode |
提出日時 | 2023-10-27 22:48:22 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 28,067 bytes |
コンパイル時間 | 3,385 ms |
コンパイル使用メモリ | 234,444 KB |
実行使用メモリ | 23,204 KB |
最終ジャッジ日時 | 2024-09-25 14:49:29 |
合計ジャッジ時間 | 9,680 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | AC | 162 ms
22,492 KB |
testcase_16 | AC | 155 ms
22,304 KB |
testcase_17 | AC | 85 ms
23,204 KB |
testcase_18 | AC | 74 ms
19,816 KB |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
testcase_33 | RE | - |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <memory> #include <numeric> #include <optional> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif #include <algorithm> #include <cassert> #include <deque> #include <fstream> #include <functional> #include <limits> #include <queue> #include <string> #include <tuple> #include <utility> #include <vector> template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1> struct shortest_path { int V, E; bool single_positive_weight; T wmin, wmax; std::vector<std::pair<int, T>> tos; std::vector<int> head; std::vector<std::tuple<int, int, T>> edges; void build_() { if (int(tos.size()) == E and int(head.size()) == V + 1) return; tos.resize(E); head.assign(V + 1, 0); for (const auto &e : edges) ++head[std::get<0>(e) + 1]; for (int i = 0; i < V; ++i) head[i + 1] += head[i]; auto cur = head; for (const auto &e : edges) { tos[cur[std::get<0>(e)]++] = std::make_pair(std::get<1>(e), std::get<2>(e)); } } shortest_path(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0) {} void add_edge(int s, int t, T w) { assert(0 <= s and s < V); assert(0 <= t and t < V); edges.emplace_back(s, t, w); ++E; if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false; wmin = std::min(wmin, w); wmax = std::max(wmax, w); } void add_bi_edge(int u, int v, T w) { add_edge(u, v, w); add_edge(v, u, w); } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // - Requirement: wmin >= 0 // - Complexity: O(E log E) using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>, std::greater<std::pair<T, int>>>; template <class Heap = Pque> void dijkstra(int s, int t = INVALID) { assert(0 <= s and s < V); build_(); dist.assign(V, INF); prev.assign(V, INVALID); dist[s] = 0; Heap pq; pq.emplace(0, s); while (!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (t == v) return; if (dist[v] < d) continue; for (int e = head[v]; e < head[v + 1]; ++e) { const auto &nx = tos[e]; T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Dijkstra algorithm // - Requirement: wmin >= 0 // - Complexity: O(V^2 + E) void dijkstra_vquad(int s, int t = INVALID) { assert(0 <= s and s < V); build_(); dist.assign(V, INF); prev.assign(V, INVALID); dist[s] = 0; std::vector<char> fixed(V, false); while (true) { int r = INVALID; T dr = INF; for (int i = 0; i < V; i++) { if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i]; } if (r == INVALID or r == t) break; fixed[r] = true; int nxt; T dx; for (int e = head[r]; e < head[r + 1]; ++e) { std::tie(nxt, dx) = tos[e]; if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r; } } } // Bellman-Ford algorithm // - Requirement: no negative loop // - Complexity: O(VE) bool bellman_ford(int s, int nb_loop) { assert(0 <= s and s < V); build_(); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == INF) continue; for (int e = head[v]; e < head[v + 1]; ++e) { const auto &nx = tos[e]; T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true; } } if (!upd) return true; } return false; } // Bellman-ford algorithm using deque // - Requirement: no negative loop // - Complexity: O(VE) void spfa(int s) { assert(0 <= s and s < V); build_(); dist.assign(V, INF); prev.assign(V, INVALID); dist[s] = 0; std::deque<int> q; std::vector<char> in_queue(V); q.push_back(s), in_queue[s] = 1; while (!q.empty()) { int now = q.front(); q.pop_front(), in_queue[now] = 0; for (int e = head[now]; e < head[now + 1]; ++e) { const auto &nx = tos[e]; T dnx = dist[now] + nx.second; int nxt = nx.first; if (dist[nxt] > dnx) { dist[nxt] = dnx; if (!in_queue[nxt]) { if (q.size() and dnx < dist[q.front()]) { // Small label first optimization q.push_front(nxt); } else { q.push_back(nxt); } prev[nxt] = now, in_queue[nxt] = 1; } } } } } // 01-BFS // - Requirement: all weights must be 0 or w (positive constant). // - Complexity: O(V + E) void zero_one_bfs(int s, int t = INVALID) { assert(0 <= s and s < V); build_(); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; std::vector<int> q(V * 4); int ql = V * 2, qr = V * 2; q[qr++] = s; while (ql < qr) { int v = q[ql++]; if (v == t) return; for (int e = head[v]; e < head[v + 1]; ++e) { const auto &nx = tos[e]; T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; if (nx.second) { q[qr++] = nx.first; } else { q[--ql] = nx.first; } } } } } // Dial's algorithm // - Requirement: wmin >= 0 // - Complexity: O(wmax * V + E) void dial(int s, int t = INVALID) { assert(0 <= s and s < V); build_(); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; std::vector<std::vector<std::pair<int, T>>> q(wmax + 1); q[0].emplace_back(s, dist[s]); int ninq = 1; int cur = 0; T dcur = 0; for (; ninq; ++cur, ++dcur) { if (cur == wmax + 1) cur = 0; while (!q[cur].empty()) { int v = q[cur].back().first; T dnow = q[cur].back().second; q[cur].pop_back(), --ninq; if (v == t) return; if (dist[v] < dnow) continue; for (int e = head[v]; e < head[v + 1]; ++e) { const auto &nx = tos[e]; T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; int nxtcur = cur + int(nx.second); if (nxtcur >= int(q.size())) nxtcur -= q.size(); q[nxtcur].emplace_back(nx.first, dnx), ++ninq; } } } } } // Solver for DAG // - Requirement: graph is DAG // - Complexity: O(V + E) bool dag_solver(int s) { assert(0 <= s and s < V); build_(); dist.assign(V, INF), prev.assign(V, INVALID); dist[s] = 0; std::vector<int> indeg(V, 0); std::vector<int> q(V * 2); int ql = 0, qr = 0; q[qr++] = s; while (ql < qr) { int now = q[ql++]; for (int e = head[now]; e < head[now + 1]; ++e) { const auto &nx = tos[e]; ++indeg[nx.first]; if (indeg[nx.first] == 1) q[qr++] = nx.first; } } ql = qr = 0; q[qr++] = s; while (ql < qr) { int now = q[ql++]; for (int e = head[now]; e < head[now + 1]; ++e) { const auto &nx = tos[e]; --indeg[nx.first]; if (dist[nx.first] > dist[now] + nx.second) dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now; if (indeg[nx.first] == 0) q[qr++] = nx.first; } } return *max_element(indeg.begin(), indeg.end()) == 0; } // Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal] // If not reachable to goal, return {} std::vector<int> retrieve_path(int goal) const { assert(int(prev.size()) == V); assert(0 <= goal and goal < V); if (dist[goal] == INF) return {}; std::vector<int> ret{goal}; while (prev[goal] != INVALID) { goal = prev[goal]; ret.push_back(goal); } std::reverse(ret.begin(), ret.end()); return ret; } void solve(int s, int t = INVALID) { if (wmin >= 0) { if (single_positive_weight) { zero_one_bfs(s, t); } else if (wmax <= 10) { dial(s, t); } else { if ((long long)V * V < (E << 4)) { dijkstra_vquad(s, t); } else { dijkstra(s, t); } } } else { bellman_ford(s, V); } } // Warshall-Floyd algorithm // - Requirement: no negative loop // - Complexity: O(E + V^3) std::vector<std::vector<T>> floyd_warshall() { build_(); std::vector<std::vector<T>> dist2d(V, std::vector<T>(V, INF)); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (const auto &e : edges) { int s = std::get<0>(e), t = std::get<1>(e); dist2d[s][t] = std::min(dist2d[s][t], std::get<2>(e)); } } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] == INF) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] == INF) continue; dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } return dist2d; } void to_dot(std::string filename = "shortest_path") const { std::ofstream ss(filename + ".DOT"); ss << "digraph{\n"; build_(); for (int i = 0; i < V; i++) { for (int e = head[i]; e < head[i + 1]; ++e) { ss << i << "->" << tos[e].first << "[label=" << tos[e].second << "];\n"; } } ss << "}\n"; ss.close(); return; } }; #include <algorithm> #include <cassert> #include <functional> #include <queue> #include <stack> #include <utility> #include <vector> // Heavy-Light Decomposition of trees // Based on http://beet-aizu.hatenablog.com/entry/2017/12/12/235950 struct HeavyLightDecomposition { int V; int k; int nb_heavy_path; std::vector<std::vector<int>> e; std::vector<int> par; // par[i] = parent of vertex i (Default: -1) std::vector<int> depth; // depth[i] = distance between root and vertex i std::vector<int> subtree_sz; // subtree_sz[i] = size of subtree whose root is i std::vector<int> heavy_child; // heavy_child[i] = child of vertex i on heavy path (Default: -1) std::vector<int> tree_id; // tree_id[i] = id of tree vertex i belongs to std::vector<int> aligned_id, aligned_id_inv; // aligned_id[i] = aligned id for vertex i (consecutive on heavy edges) std::vector<int> head; // head[i] = id of vertex on heavy path of vertex i, nearest to root std::vector<int> head_ids; // consist of head vertex id's std::vector<int> heavy_path_id; // heavy_path_id[i] = heavy_path_id for vertex [i] HeavyLightDecomposition(int sz = 0) : V(sz), k(0), nb_heavy_path(0), e(sz), par(sz), depth(sz), subtree_sz(sz), heavy_child(sz), tree_id(sz, -1), aligned_id(sz), aligned_id_inv(sz), head(sz), heavy_path_id(sz, -1) {} void add_edge(int u, int v) { e[u].emplace_back(v); e[v].emplace_back(u); } void _build_dfs(int root) { std::stack<std::pair<int, int>> st; par[root] = -1; depth[root] = 0; st.emplace(root, 0); while (!st.empty()) { int now = st.top().first; int &i = st.top().second; if (i < (int)e[now].size()) { int nxt = e[now][i++]; if (nxt == par[now]) continue; par[nxt] = now; depth[nxt] = depth[now] + 1; st.emplace(nxt, 0); } else { st.pop(); int max_sub_sz = 0; subtree_sz[now] = 1; heavy_child[now] = -1; for (auto nxt : e[now]) { if (nxt == par[now]) continue; subtree_sz[now] += subtree_sz[nxt]; if (max_sub_sz < subtree_sz[nxt]) max_sub_sz = subtree_sz[nxt], heavy_child[now] = nxt; } } } } void _build_bfs(int root, int tree_id_now) { std::queue<int> q({root}); while (!q.empty()) { int h = q.front(); q.pop(); head_ids.emplace_back(h); for (int now = h; now != -1; now = heavy_child[now]) { tree_id[now] = tree_id_now; aligned_id[now] = k++; aligned_id_inv[aligned_id[now]] = now; heavy_path_id[now] = nb_heavy_path; head[now] = h; for (int nxt : e[now]) if (nxt != par[now] and nxt != heavy_child[now]) q.push(nxt); } nb_heavy_path++; } } void build(std::vector<int> roots = {0}) { int tree_id_now = 0; for (auto r : roots) _build_dfs(r), _build_bfs(r, tree_id_now++); } template <class T> std::vector<T> segtree_rearrange(const std::vector<T> &data) const { assert(int(data.size()) == V); std::vector<T> ret; ret.reserve(V); for (int i = 0; i < V; i++) ret.emplace_back(data[aligned_id_inv[i]]); return ret; } // query for vertices on path [u, v] (INCLUSIVE) void for_each_vertex(int u, int v, const std::function<void(int ancestor, int descendant)> &f) const { while (true) { if (aligned_id[u] > aligned_id[v]) std::swap(u, v); f(std::max(aligned_id[head[v]], aligned_id[u]), aligned_id[v]); if (head[u] == head[v]) break; v = par[head[v]]; } } void for_each_vertex_noncommutative( int from, int to, const std::function<void(int ancestor, int descendant)> &fup, const std::function<void(int ancestor, int descendant)> &fdown) const { int u = from, v = to; const int lca = lowest_common_ancestor(u, v), dlca = depth[lca]; while (u >= 0 and depth[u] > dlca) { const int p = (depth[head[u]] > dlca ? head[u] : lca); fup(aligned_id[p] + (p == lca), aligned_id[u]), u = par[p]; } static std::vector<std::pair<int, int>> lrs; int sz = 0; while (v >= 0 and depth[v] >= dlca) { const int p = (depth[head[v]] >= dlca ? head[v] : lca); if (int(lrs.size()) == sz) lrs.emplace_back(0, 0); lrs.at(sz++) = {p, v}, v = par.at(p); } while (sz--) fdown(aligned_id[lrs.at(sz).first], aligned_id[lrs.at(sz).second]); } // query for edges on path [u, v] void for_each_edge(int u, int v, const std::function<void(int, int)> &f) const { while (true) { if (aligned_id[u] > aligned_id[v]) std::swap(u, v); if (head[u] != head[v]) { f(aligned_id[head[v]], aligned_id[v]); v = par[head[v]]; } else { if (u != v) f(aligned_id[u] + 1, aligned_id[v]); break; } } } // lowest_common_ancestor: O(log V) int lowest_common_ancestor(int u, int v) const { assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0); while (true) { if (aligned_id[u] > aligned_id[v]) std::swap(u, v); if (head[u] == head[v]) return u; v = par[head[v]]; } } int distance(int u, int v) const { assert(tree_id[u] == tree_id[v] and tree_id[u] >= 0); return depth[u] + depth[v] - 2 * depth[lowest_common_ancestor(u, v)]; } // Level ancestor, O(log V) // if k-th parent is out of range, return -1 int kth_parent(int v, int k) const { if (k < 0) return -1; while (v >= 0) { int h = head.at(v), len = depth.at(v) - depth.at(h); if (k <= len) return aligned_id_inv.at(aligned_id.at(v) - k); k -= len + 1, v = par.at(h); } return -1; } // Jump on tree, O(log V) int s_to_t_by_k_steps(int s, int t, int k) const { if (k < 0) return -1; if (k == 0) return s; int lca = lowest_common_ancestor(s, t); if (k <= depth.at(s) - depth.at(lca)) return kth_parent(s, k); return kth_parent(t, depth.at(s) + depth.at(t) - depth.at(lca) * 2 - k); } }; // UnionFind Tree (0-indexed), based on size of each disjoint set struct UnionFind { std::vector<int> par, cou; UnionFind(int N = 0) : par(N), cou(N, 1) { iota(par.begin(), par.end(), 0); } int find(int x) { return (par[x] == x) ? x : (par[x] = find(par[x])); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return false; if (cou[x] < cou[y]) std::swap(x, y); par[y] = x, cou[x] += cou[y]; return true; } int count(int x) { return cou[find(x)]; } bool same(int x, int y) { return find(x) == find(y); } std::vector<std::vector<int>> groups() { std::vector<std::vector<int>> ret(par.size()); for (int i = 0; i < int(par.size()); ++i) ret[find(i)].push_back(i); ret.erase(std::remove_if(ret.begin(), ret.end(), [&](const std::vector<int> &v) { return v.empty(); }), ret.end()); return ret; } }; int main() { vector<lint> Anew, Bnew; int R; vector<int> pars; vector<int> vsord; { int N; cin >> N; vector<int> A(N), B(N), C(N); cin >> A >> B >> C; // dbg(make_tuple(N, A, B, C)); REP(i, N) C.at(i)--; UnionFind ufinit(N); HeavyLightDecomposition hld(N); vector<pint> loop_es; REP(i, N) { int j = C.at(i); if (ufinit.unite(i, j)) { hld.add_edge(i, j); } else { loop_es.emplace_back(i, j); } } hld.build(); UnionFind uf(N); for (auto [a, b] : loop_es) { uf.unite(a, b); while (a != b) { if (hld.depth.at(a) > hld.depth.at(b)) { int j = hld.par.at(a); uf.unite(a, j); a = j; } else { int j = hld.par.at(b); uf.unite(b, j); b = j; } } } vector<int> rs; REP(i, N) if (uf.find(i) == i) rs.push_back(i); R = rs.size(); Anew.assign(R, 0), Bnew.assign(R, 0); REP(i, N) { Anew.at(arglb(rs, uf.find(i))) += A.at(i); Bnew.at(arglb(rs, uf.find(i))) += B.at(i); } pars.assign(R, -1); shortest_path<int> sp(R + 1); REP(i, N) { int p = arglb(rs, uf.find(C.at(i))); int c = arglb(rs, uf.find(i)); dbg(make_tuple(p, c)); if (p != c) { sp.add_edge(p, c, 1); pars.at(c) = p; } else { sp.add_edge(R, c, 0); } } sp.solve(R); // dbg(sp.dist); vsord.resize(R); REP(r, R) vsord.at(r) = r; sort(ALL(vsord), [&](int i, int j) { return sp.dist.at(i) > sp.dist.at(j); }); dbg(vsord); } lint ok = 0, ng = accumulate(ALL(Anew), 0LL) / accumulate(ALL(Bnew), 0LL) + 1; // dbg(ng); while (ng > ok + 1) { const auto c = (ok + ng) / 2; vector<lint> req(R); REP(r, R) req.at(r) = Bnew.at(r) * c; // dbg(make_tuple(c, req, Bnew)); bool failure = false; for (int v : vsord) { req.at(v) -= Anew.at(v); if (req.at(v) > 0) { int p = pars.at(v); if (p < 0) { failure = true; break; } else { req.at(p) += req.at(v); } } } (failure ? ng : ok) = c; } cout << ok << '\n'; }