結果
問題 | No.2524 Stripes |
ユーザー | 沙耶花 |
提出日時 | 2023-10-27 23:32:00 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 908 ms / 7,000 ms |
コード長 | 6,108 bytes |
コンパイル時間 | 4,813 ms |
コンパイル使用メモリ | 275,396 KB |
実行使用メモリ | 10,572 KB |
最終ジャッジ日時 | 2024-09-25 15:25:41 |
合計ジャッジ時間 | 12,797 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 449 ms
6,496 KB |
testcase_04 | AC | 15 ms
5,376 KB |
testcase_05 | AC | 222 ms
5,376 KB |
testcase_06 | AC | 449 ms
6,080 KB |
testcase_07 | AC | 580 ms
7,312 KB |
testcase_08 | AC | 580 ms
6,772 KB |
testcase_09 | AC | 115 ms
5,376 KB |
testcase_10 | AC | 409 ms
5,728 KB |
testcase_11 | AC | 14 ms
5,376 KB |
testcase_12 | AC | 100 ms
5,376 KB |
testcase_13 | AC | 840 ms
8,112 KB |
testcase_14 | AC | 853 ms
8,104 KB |
testcase_15 | AC | 847 ms
8,472 KB |
testcase_16 | AC | 908 ms
10,572 KB |
testcase_17 | AC | 562 ms
6,916 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
ソースコード
#include <stdio.h> #include <atcoder/all> #include <bits/stdc++.h> using namespace std; using namespace atcoder; using mint = modint998244353; #define rep(i,n) for (int i = 0; i < (n); ++i) #define Inf32 1000000001 #define Inf64 4000000000000000001 // https://nyaannyaan.github.io/library/fps/formal-power-series.hpp struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const FPS &r) { auto ret = convolution(r,*this); return (*this) = FPS(ret.begin(),ret.end()); } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inv(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(ret.begin(), ret.end()); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS((*this).begin(), (*this).begin() + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } FPS inv(int deg = -1) const { assert((*this)[0] != mint(0)); if (deg == -1) deg = (*this).size(); FPS ret({mint(1) / (*this)[0]}); for (int i = 1; i < deg; i <<= 1) ret = (ret + ret - ret * ret * (*this).pre(i << 1)).pre(i << 1); return ret.pre(deg); } FPS exp(int deg = -1) const{ assert((*this).size() == 0 || (*this)[0] == mint(0)); if (deg == -1) deg = (int)this->size(); FPS ret({mint(1)}); for (int i = 1; i < deg; i <<= 1) { ret = (ret * (pre(i << 1) + mint(1) - ret.log(i << 1))).pre(i << 1); } return ret.pre(deg); } }; using fps = FormalPowerSeries; int n; string s; using A = array<array<fps,2>,2>; A dfs(int l,int r){ if(r-l==1){ A ret; ret[0][0] = {0}; ret[0][1] = {0}; ret[1][0] = {0}; ret[1][1] = {0}; if(s[l]=='R'){ ret[0][0].push_back(1); } else{ ret[1][1].push_back(1); } return ret; } int m = (l+r)/2; auto x = dfs(l,m),y = dfs(m,r); //cout<<x[0][0][1].val()<<' '<<y[1][1][1].val()<<endl; A ret; rep(i,2){ rep(j,2){ ret[i][j] = x[i][j] + y[i][j]; } } rep(i,2){ rep(j,2){ rep(k,2){ ret[i][k] += x[i][j] * y[(j+1)%2][k]; } } } return ret; } int main(){ cin>>n>>s; auto ret = dfs(0,n); rep(i,2){ rep(j,2){ while(ret[i][j].size()<=n+5)ret[i][j].push_back(0); } } for(int i=1;i<=n;i++){ mint ans = 0; rep(j,2){ rep(k,2){ ans += ret[j][k][i]; } } cout<<ans.val()<<endl; } return 0; }