結果

問題 No.2520 L1 Explosion
ユーザー 👑 emthrmemthrm
提出日時 2023-10-27 23:46:44
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 244 ms / 2,000 ms
コード長 7,527 bytes
コンパイル時間 3,573 ms
コンパイル使用メモリ 270,296 KB
実行使用メモリ 73,856 KB
最終ジャッジ日時 2024-09-25 15:34:23
合計ジャッジ時間 7,179 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <unsigned int M>
struct MInt {
unsigned int v;
constexpr MInt() : v(0) {}
constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr MInt raw(const int x) {
MInt x_;
x_.v = x;
return x_;
}
static constexpr int get_mod() { return M; }
static constexpr void set_mod(const int divisor) {
assert(std::cmp_equal(divisor, M));
}
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * raw(M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
if (const int prev = factorial.size(); n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
if (const int prev = f_inv.size(); n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
constexpr MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
constexpr MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
constexpr MInt& operator*=(const MInt& x) {
v = (unsigned long long){v} * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
constexpr auto operator<=>(const MInt& x) const = default;
constexpr MInt& operator++() {
if (++v == M) [[unlikely]] v = 0;
return *this;
}
constexpr MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
constexpr MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
constexpr MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
constexpr MInt operator+() const { return *this; }
constexpr MInt operator-() const { return raw(v ? M - v : 0); }
constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; }
constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
template <typename T>
struct CumulativeSum2D {
explicit CumulativeSum2D(const int h, const int w)
: CumulativeSum2D(std::vector<std::vector<T>>(h, std::vector<T>(w, 0))) {}
template <typename U>
explicit CumulativeSum2D(const std::vector<std::vector<U>>& a)
: is_built(false), h(a.size()), w(a.front().size()),
data(h + 1, std::vector<T>(w + 1, 0)) {
for (int i = 0; i < h; ++i) {
std::copy(a[i].begin(), a[i].end(), std::next(data[i + 1].begin()));
}
}
void add(const int y, const int x, const T val) {
assert(!is_built);
data[y + 1][x + 1] += val;
}
void build() {
assert(!is_built);
is_built = true;
for (int i = 0; i < h; ++i) {
std::partial_sum(data[i + 1].begin(), data[i + 1].end(),
data[i + 1].begin());
}
for (int j = 1; j <= w; ++j) {
for (int i = 1; i < h; ++i) {
data[i + 1][j] += data[i][j];
}
}
}
T query(const int y1, const int x1, const int y2, const int x2) const {
assert(is_built);
return y1 > y2 || x1 > x2 ? 0 : data[y2 + 1][x2 + 1] - data[y2 + 1][x1]
- data[y1][x2 + 1] + data[y1][x1];
}
bool is_built;
const int h, w;
std::vector<std::vector<T>> data;
};
int main() {
int n, m; cin >> n >> m;
vector<ll> lx(n), uy(n), rx(n), dy(n);
REP(i, n) {
ll x, y; int h; cin >> x >> y >> h;
const int diam = m - h;
lx[i] = x - y - diam;
rx[i] = x - y + diam;
uy[i] = x + y - diam;
dy[i] = x + y + diam ;
}
vector<ll> x(n * 2), y(n * 2);
ranges::copy(lx, x.begin());
ranges::copy(rx, next(x.begin(), n));
ranges::sort(x);
x.erase(unique(x.begin(), x.end()), x.end());
ranges::copy(uy, y.begin());
ranges::copy(dy, next(y.begin(), n));
ranges::sort(y);
y.erase(unique(y.begin(), y.end()), y.end());
CumulativeSum2D<int> sum(y.size(), x.size());
REP(i, n) {
const int y1 = distance(y.begin(), ranges::lower_bound(y, uy[i]));
const int y2 = distance(y.begin(), ranges::lower_bound(y, dy[i]));
const int x1 = distance(x.begin(), ranges::lower_bound(x, lx[i]));
const int x2 = distance(x.begin(), ranges::lower_bound(x, rx[i]));
sum.add(y1, x1, 1);
sum.add(y2, x1, -1);
sum.add(y1, x2, -1);
sum.add(y2, x2, 1);
}
sum.build();
vector<ModInt> ans(n + 1, 0);
REP(i, y.size() - 1) REP(j, x.size() - 1) {
ans[sum.data[i + 1][j + 1]] += (y[i + 1] - y[i]) * (x[j + 1] - x[j]);
}
FOR(i, 1, n + 1) cout << ans[i] / 2 << '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0