結果
問題 | No.2523 Trick Flower |
ユーザー | torisasami4 |
提出日時 | 2023-10-27 23:59:36 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 87 ms / 4,000 ms |
コード長 | 7,491 bytes |
コンパイル時間 | 3,149 ms |
コンパイル使用メモリ | 247,068 KB |
実行使用メモリ | 21,180 KB |
最終ジャッジ日時 | 2024-09-25 15:39:10 |
合計ジャッジ時間 | 5,505 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 87 ms
16,384 KB |
testcase_16 | AC | 83 ms
16,384 KB |
testcase_17 | AC | 56 ms
16,512 KB |
testcase_18 | AC | 63 ms
21,180 KB |
testcase_19 | AC | 67 ms
16,416 KB |
testcase_20 | AC | 68 ms
16,512 KB |
testcase_21 | AC | 68 ms
16,512 KB |
testcase_22 | AC | 67 ms
16,384 KB |
testcase_23 | AC | 68 ms
16,384 KB |
testcase_24 | AC | 36 ms
10,880 KB |
testcase_25 | AC | 57 ms
14,976 KB |
testcase_26 | AC | 53 ms
14,592 KB |
testcase_27 | AC | 61 ms
15,744 KB |
testcase_28 | AC | 49 ms
13,568 KB |
testcase_29 | AC | 13 ms
5,632 KB |
testcase_30 | AC | 43 ms
12,416 KB |
testcase_31 | AC | 5 ms
5,376 KB |
testcase_32 | AC | 26 ms
8,576 KB |
testcase_33 | AC | 64 ms
16,256 KB |
ソースコード
// #define _GLIBCXX_DEBUG #pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math") #include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < int(n); i++) #define per(i, n) for (int i = (n)-1; 0 <= i; i--) #define rep2(i, l, r) for (int i = (l); i < int(r); i++) #define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--) #define each(e, v) for (auto& e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() template <typename T> void print(const vector<T>& v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } using ll = long long; using pii = pair<int, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T& x, const T& y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T& x, const T& y) { return (x > y) ? (x = y, true) : false; } template <class T> using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class T> using maxheap = std::priority_queue<T>; template <typename T> int lb(const vector<T>& v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T>& v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T>& v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } // __int128_t gcd(__int128_t a, __int128_t b) { // if (a == 0) // return b; // if (b == 0) // return a; // __int128_t cnt = a % b; // while (cnt != 0) { // a = b; // b = cnt; // cnt = a % b; // } // return b; // } struct Union_Find_Tree { vector<int> data; const int n; int cnt; Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {} int root(int x) { if (data[x] < 0) return x; return data[x] = root(data[x]); } int operator[](int i) { return root(i); } bool unite(int x, int y) { x = root(x), y = root(y); if (x == y) return false; if (data[x] > data[y]) swap(x, y); data[x] += data[y], data[y] = x; cnt--; return true; } int size(int x) { return -data[root(x)]; } int count() { return cnt; }; bool same(int x, int y) { return root(x) == root(y); } void clear() { cnt = n; fill(begin(data), end(data), -1); } }; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int& operator+=(const Mod_Int& p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int& operator-=(const Mod_Int& p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int& operator*=(const Mod_Int& p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int& operator/=(const Mod_Int& p) { *this *= p.inverse(); return *this; } Mod_Int& operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int& operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int& p) const { return x == p.x; } bool operator!=(const Mod_Int& p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream& operator<<(ostream& os, const Mod_Int& p) { return os << p.x; } friend istream& operator>>(istream& is, Mod_Int& p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; ll mpow2(ll x, ll n, ll mod) { ll ans = 1; x %= mod; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } ans %= mod; return ans; } template <typename T> T modinv(T a, const T& m) { T b = m, u = 1, v = 0; while (b > 0) { T t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return u >= 0 ? u % m : (m - (-u) % m) % m; } ll divide_int(ll a, ll b) { if (b < 0) a = -a, b = -b; return (a >= 0 ? a / b : (a - b + 1) / b); } // const int MOD = 1000000007; const int MOD = 998244353; using mint = Mod_Int<MOD>; // ----- library ------- pair<vector<vector<int>>, vector<vector<int>>> functional_graph_decompose(const vector<int> &a) { int n = a.size(); vector<vector<int>> cycles; vector<vector<int>> es(n); vector<int> c(n, 0); for (int i = 0; i < n; i++) { for (int p = i;; p = a[p]) { if (c[p] == 1) { int q = p; vector<int> cycle; do { cycle.push_back(q); c[q] = 3; q = a[q]; } while (q != p); cycles.push_back(cycle); } if (c[p] >= 2) break; c[p]++; } for (int p = i; c[p] == 1; p = a[p]) c[p] = 2; } for (int i = 0; i < n; i++) { if (c[i] != 3) { es[i].push_back(a[i]); } } return make_pair(cycles, es); } // ----- library ------- int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << fixed << setprecision(15); int n; cin >> n; vector<ll> a(n), b(n); vector<int> c(n); rep(i, n) cin >> a[i]; rep(i, n) cin >> b[i]; rep(i, n) cin >> c[i], c[i]--; auto [cs, es] = functional_graph_decompose(c); vector<int> fc(n, 0); Union_Find_Tree uf(n); for (auto p : cs) { for (auto q : p) uf.unite(q, p[0]), fc[q] = 1; } vector<int> ord; queue<int> que; vector<int> ind(n, 0); rep(i, n) each(e, es[i]) ind[e]++; rep(i, n) if (!ind[i] && !fc[i]) que.push(i); while (sz(que)) { int now = que.front(); que.pop(); ord.eb(now); each(e, es[now]) { ind[e]--; if (!ind[e] && !fc[e]) que.push(e); } } ll sa = accumulate(all(a), 0ll), sb = accumulate(all(b), 0ll); ll ok = 0, ng = sa / sb + 1; while (abs(ok - ng) > 1) { ll mid = (ok + ng) / 2; vector<ll> d(n); rep(i, n) d[i] = b[i] * mid - a[i]; each(e, ord) d[c[e]] += max(0ll, d[e]); rep(i, n) if (fc[i] && uf.root(i) != i) d[uf.root(i)] += d[i]; bool fl = true; rep(i, n) if (fc[i] && uf.root(i) == i && d[i] > 0) fl = false; (fl ? ok : ng) = mid; } cout << ok << endl; }