結果

問題 No.1907 DETERMINATION
ユーザー 松杰方松杰方
提出日時 2023-10-28 20:09:15
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 793 ms / 4,000 ms
コード長 7,154 bytes
コンパイル時間 3,238 ms
コンパイル使用メモリ 259,684 KB
実行使用メモリ 7,040 KB
最終ジャッジ日時 2024-09-25 16:34:30
合計ジャッジ時間 31,078 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 243 ms
6,944 KB
testcase_08 AC 102 ms
6,940 KB
testcase_09 AC 170 ms
6,940 KB
testcase_10 AC 567 ms
7,040 KB
testcase_11 AC 274 ms
6,940 KB
testcase_12 AC 561 ms
6,940 KB
testcase_13 AC 530 ms
6,944 KB
testcase_14 AC 494 ms
6,940 KB
testcase_15 AC 106 ms
6,948 KB
testcase_16 AC 42 ms
6,940 KB
testcase_17 AC 525 ms
6,940 KB
testcase_18 AC 366 ms
6,940 KB
testcase_19 AC 14 ms
6,940 KB
testcase_20 AC 530 ms
6,940 KB
testcase_21 AC 55 ms
6,940 KB
testcase_22 AC 491 ms
6,940 KB
testcase_23 AC 592 ms
7,040 KB
testcase_24 AC 181 ms
6,940 KB
testcase_25 AC 2 ms
6,944 KB
testcase_26 AC 562 ms
7,040 KB
testcase_27 AC 684 ms
7,040 KB
testcase_28 AC 686 ms
7,040 KB
testcase_29 AC 659 ms
7,040 KB
testcase_30 AC 3 ms
6,940 KB
testcase_31 AC 575 ms
6,944 KB
testcase_32 AC 562 ms
6,944 KB
testcase_33 AC 572 ms
6,944 KB
testcase_34 AC 568 ms
6,944 KB
testcase_35 AC 2 ms
6,944 KB
testcase_36 AC 2 ms
6,940 KB
testcase_37 AC 2 ms
6,940 KB
testcase_38 AC 570 ms
6,944 KB
testcase_39 AC 575 ms
7,040 KB
testcase_40 AC 786 ms
7,040 KB
testcase_41 AC 565 ms
7,040 KB
testcase_42 AC 793 ms
6,940 KB
testcase_43 AC 788 ms
7,040 KB
testcase_44 AC 631 ms
7,040 KB
testcase_45 AC 674 ms
7,040 KB
testcase_46 AC 567 ms
7,040 KB
testcase_47 AC 569 ms
7,040 KB
testcase_48 AC 573 ms
7,040 KB
testcase_49 AC 597 ms
6,944 KB
testcase_50 AC 575 ms
7,040 KB
testcase_51 AC 570 ms
7,040 KB
testcase_52 AC 2 ms
6,940 KB
testcase_53 AC 589 ms
6,948 KB
testcase_54 AC 590 ms
6,944 KB
testcase_55 AC 2 ms
6,940 KB
testcase_56 AC 593 ms
6,944 KB
testcase_57 AC 594 ms
6,944 KB
testcase_58 AC 460 ms
6,940 KB
testcase_59 AC 389 ms
7,040 KB
testcase_60 AC 396 ms
7,040 KB
testcase_61 AC 476 ms
7,040 KB
testcase_62 AC 397 ms
7,040 KB
testcase_63 AC 562 ms
7,040 KB
testcase_64 AC 2 ms
6,944 KB
testcase_65 AC 2 ms
6,940 KB
testcase_66 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

// https://github.com/hos-lyric/libra/blob/master/algebra/modint.h
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};

// https://yukicoder.me/submissions/737488
// Editorial 解
#include <cassert>
#include <iostream>
#include <utility>
#include <vector>
using namespace std;

// Library Checker Characteristic Polynomial https://judge.yosupo.jp/problem/characteristic_polynomial
// Upper Hessenberg reduction of square matrices
// Complexity: O(n^3)
// Reference:
// http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf
template <class Tp> void hessenberg_reduction(std::vector<std::vector<Tp>> &M) {
  assert(M.size() == M[0].size());
  const int N = M.size();
  for (int r = 0; r < N - 2; r++) {
    int piv = -1;
    for (int h = r + 1; h < N; ++h) {
      if (M[h][r] != 0) {
        piv = h;
        break;
      }
    }
    if (piv < 0) continue;
    for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]);
    for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]);

    const auto rinv = Tp(1) / M[r + 1][r];
    for (int i = r + 2; i < N; i++) {
      const auto n = M[i][r] * rinv;
      for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n;
      for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n;
    }
  }
}
// Characteristic polynomial of matrix M (|xI - M|)
// Complexity: O(n^3)
// R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011.
template <class Tp> std::vector<Tp> characteristic_poly(std::vector<std::vector<Tp>> M) {
  hessenberg_reduction(M);
  const int N = M.size();
  // p[i + 1] = (Characteristic polynomial of i-th leading principal minor)
  std::vector<std::vector<Tp>> p(N + 1);
  p[0] = {1};
  for (int i = 0; i < N; i++) {
    p[i + 1].assign(i + 2, 0);
    for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j];
    for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i];
    Tp betas = 1;
    for (int j = i - 1; j >= 0; j--) {
      betas *= M[j + 1][j];
      Tp hb = -M[j][i] * betas;
      for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k];
    }
  }
  return p[N];
}
// Library Checker ここまで


template <class T>
std::vector<T> det_of_first_degree_mat(std::vector<std::vector<T>> M0, std::vector<std::vector<T>> M1) {
  const int N = M0.size();

  int multiply_by_x = 0;  // 「特定の列に x をかける」操作を行った回数
  T detAdetBinv = 1;  // 解説中の 1 / (det A det B) の値

  for (int p = 0; p < N; ++p) {
    // M1[p][p] に nonzero を持ってきて、M1 の第 p 列を掃き出す

    int pivot = -1;
    for (int row = p; row < N; ++row) {
      if (M1[row][p] != T()) {
        pivot = row;
        break;
      }
    }

    if (pivot < 0) {
      ++multiply_by_x;
      if (multiply_by_x > N) return std::vector<T>(N + 1);

      // M1 の第 p 列で pivot が見つからなかった場合、M0 + x M1 の第 p 列に x をかけたい

      // かける前に M1 の第 p 列を第 1 ~ (p - 1) 列を使って掃き出して、
      // x をかけた後で x の二次の項が出てこないようにする
      for (int row = 0; row < p; ++row) {
        T v = M1[row][p];
        M1[row][p] = 0;
        for (int i = 0; i < N; ++i) M0[i][p] -= v * M0[i][row];
      }
      for (int i = 0; i < N; ++i) swap(M0[i][p], M1[i][p]);

      --p;  // 第 p 列をもう一度やり直す この処理は高々 N 回しか走らないので全体の計算量は O(n^3) が保たれる
      continue;
    }

    if (pivot != p) {
      M1[pivot].swap(M1[p]);
      M0[pivot].swap(M0[p]);
      detAdetBinv *= -1;
    }


    // p 行目を定数倍して M1[p][p] == 1 にする
    T v = M1[p][p], vinv = v.inv();
    detAdetBinv *= v;
    for (int col = 0; col < N; ++col) {
      M0[p][col] *= vinv;
      M1[p][col] *= vinv;
    }

    // p 行目を使用して M1 の p 列目を p 行目以外ゼロにする
    for (int row = 0; row < N; ++row) {
      if (row == p) continue;
      T v = M1[row][p];
      for (int col = 0; col < N; ++col) {
        M0[row][col] -= M0[p][col] * v;
        M1[row][col] -= M1[p][col] * v;
      }
    }
  }

  // この時点で M1 = I なので det(xI + M0) を求める
  for (auto &vec : M0) {
    for (auto &x : vec) x = -x;
  }
  auto poly = characteristic_poly(M0);
  for (auto &x : poly) x *= detAdetBinv;

  poly.erase(poly.begin(), poly.begin() + multiply_by_x);
  poly.resize(N + 1);
  return poly;
}

using mint = ModInt<998244353>;

int main() {
  int n;
  cin >> n;
  vector<vector<mint>> M0(n, vector<mint>(n)), M1(n, vector<mint>(n));

  for (auto& v : M0) {
    for (auto &x: v) {
      int x1;
      cin >> x1;
      x = x1;
    }
  }

  for (auto& v : M1) {
    for (auto& x : v) {
      int x1;
      cin >> x1;
      x = x1;
    }
  }

  for (auto v : det_of_first_degree_mat(M0, M1)) {
    cout << v << '\n';
  }
}
0