結果
問題 | No.2342 Triple Tree Query (Hard) |
ユーザー | hashiryo |
提出日時 | 2023-10-30 16:22:59 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2,387 ms / 10,000 ms |
コード長 | 29,632 bytes |
コンパイル時間 | 3,620 ms |
コンパイル使用メモリ | 252,096 KB |
実行使用メモリ | 15,780 KB |
最終ジャッジ日時 | 2024-09-25 17:18:33 |
合計ジャッジ時間 | 53,597 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 14 ms
5,376 KB |
testcase_03 | AC | 14 ms
5,376 KB |
testcase_04 | AC | 12 ms
5,376 KB |
testcase_05 | AC | 12 ms
5,376 KB |
testcase_06 | AC | 14 ms
5,376 KB |
testcase_07 | AC | 2,094 ms
15,724 KB |
testcase_08 | AC | 2,101 ms
15,692 KB |
testcase_09 | AC | 2,145 ms
15,780 KB |
testcase_10 | AC | 2,069 ms
15,724 KB |
testcase_11 | AC | 2,166 ms
15,724 KB |
testcase_12 | AC | 2,137 ms
15,720 KB |
testcase_13 | AC | 2,101 ms
15,768 KB |
testcase_14 | AC | 2,154 ms
15,652 KB |
testcase_15 | AC | 2,110 ms
15,712 KB |
testcase_16 | AC | 2,169 ms
15,724 KB |
testcase_17 | AC | 268 ms
15,644 KB |
testcase_18 | AC | 263 ms
15,624 KB |
testcase_19 | AC | 260 ms
15,596 KB |
testcase_20 | AC | 263 ms
15,728 KB |
testcase_21 | AC | 274 ms
15,756 KB |
testcase_22 | AC | 575 ms
15,720 KB |
testcase_23 | AC | 466 ms
15,580 KB |
testcase_24 | AC | 566 ms
15,652 KB |
testcase_25 | AC | 1,405 ms
15,596 KB |
testcase_26 | AC | 1,350 ms
15,668 KB |
testcase_27 | AC | 1,332 ms
15,720 KB |
testcase_28 | AC | 1,393 ms
15,728 KB |
testcase_29 | AC | 1,428 ms
15,724 KB |
testcase_30 | AC | 662 ms
15,660 KB |
testcase_31 | AC | 728 ms
15,648 KB |
testcase_32 | AC | 666 ms
15,656 KB |
testcase_33 | AC | 2,256 ms
15,724 KB |
testcase_34 | AC | 2,282 ms
15,720 KB |
testcase_35 | AC | 2,264 ms
15,644 KB |
testcase_36 | AC | 2,387 ms
15,708 KB |
testcase_37 | AC | 2,026 ms
15,724 KB |
ソースコード
// #define _GLIBCXX_DEBUG #include <bits/stdc++.h> // clang-format off std::ostream&operator<<(std::ostream&os,std::int8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,std::uint8_t x){return os<<(int)x;} std::ostream&operator<<(std::ostream&os,const __int128_t &v){if(!v)os<<"0";__int128_t tmp=v<0?(os<<"-",-v):v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;} std::ostream&operator<<(std::ostream&os,const __uint128_t &v){if(!v)os<<"0";__uint128_t tmp=v;std::string s;while(tmp)s+='0'+(tmp%10),tmp/=10;return std::reverse(s.begin(),s.end()),os<<s;} #define checkpoint() (void(0)) #define debug(...) (void(0)) #define debugArray(x,n) (void(0)) #define debugMatrix(x,h,w) (void(0)) // clang-format on #include <type_traits> template <class Int> constexpr inline Int mod_inv(Int a, Int mod) { static_assert(std::is_signed_v<Int>); Int x= 1, y= 0, b= mod; for (Int q= 0, z= 0; b;) z= x, x= y, y= z - y * (q= a / b), z= a, a= b, b= z - b * q; return assert(a == 1), x < 0 ? mod - (-x) % mod : x % mod; } namespace math_internal { using namespace std; using u8= unsigned char; using u32= unsigned; using i64= long long; using u64= unsigned long long; using u128= __uint128_t; #define CE constexpr #define IL inline #define NORM \ if (n >= mod) n-= mod; \ return n #define PLUS(U, M) \ CE IL U plus(U l, U r) const { \ if (l+= r; l >= M) l-= M; \ return l; \ } #define DIFF(U, C, M) \ CE IL U diff(U l, U r) const { \ if (l-= r; l >> C) l+= M; \ return l; \ } #define SGN(U) \ static CE IL U set(U n) { return n; } \ static CE IL U get(U n) { return n; } \ static CE IL U norm(U n) { return n; } template <class u_t, class du_t, u8 B, u8 A> struct MP_Mo { u_t mod; CE MP_Mo(): mod(0), iv(0), r2(0) {} CE MP_Mo(u_t m): mod(m), iv(inv(m)), r2(-du_t(mod) % mod) {} CE IL u_t mul(u_t l, u_t r) const { return reduce(du_t(l) * r); } PLUS(u_t, mod << 1) DIFF(u_t, A, mod << 1) CE IL u_t set(u_t n) const { return mul(n, r2); } CE IL u_t get(u_t n) const { n= reduce(n); NORM; } CE IL u_t norm(u_t n) const { NORM; } private: u_t iv, r2; static CE u_t inv(u_t n, int e= 6, u_t x= 1) { return e ? inv(n, e - 1, x * (2 - x * n)) : x; } CE IL u_t reduce(const du_t &w) const { return u_t(w >> B) + mod - ((du_t(u_t(w) * iv) * mod) >> B); } }; struct MP_Na { u32 mod; CE MP_Na(): mod(0){}; CE MP_Na(u32 m): mod(m) {} CE IL u32 mul(u32 l, u32 r) const { return u64(l) * r % mod; } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) }; struct MP_Br { // mod < 2^31 u32 mod; CE MP_Br(): mod(0), s(0), x(0) {} CE MP_Br(u32 m): mod(m), s(95 - __builtin_clz(m - 1)), x(((u128(1) << s) + m - 1) / m) {} CE IL u32 mul(u32 l, u32 r) const { return rem(u64(l) * r); } PLUS(u32, mod) DIFF(u32, 31, mod) SGN(u32) private: u8 s; u64 x; CE IL u64 quo(u64 n) const { return (u128(x) * n) >> s; } CE IL u32 rem(u64 n) const { return n - quo(n) * mod; } }; struct MP_Br2 { // 2^20 < mod <= 2^41 u64 mod; CE MP_Br2(): mod(0), x(0) {} CE MP_Br2(u64 m): mod(m), x((u128(1) << 84) / m) {} CE IL u64 mul(u64 l, u64 r) const { return rem(u128(l) * r); } PLUS(u64, mod << 1) DIFF(u64, 63, mod << 1) static CE IL u64 set(u64 n) { return n; } CE IL u64 get(u64 n) const { NORM; } CE IL u64 norm(u64 n) const { NORM; } private: u64 x; CE IL u128 quo(const u128 &n) const { return (n * x) >> 84; } CE IL u64 rem(const u128 &n) const { return n - quo(n) * mod; } }; struct MP_D2B1 { u8 s; u64 mod, d, v; CE MP_D2B1(): s(0), mod(0), d(0), v(0) {} CE MP_D2B1(u64 m): s(__builtin_clzll(m)), mod(m), d(m << s), v(u128(-1) / d) {} CE IL u64 mul(u64 l, u64 r) const { return rem((u128(l) * r) << s) >> s; } PLUS(u64, mod) DIFF(u64, 63, mod) SGN(u64) private: CE IL u64 rem(const u128 &u) const { u128 q= (u >> 64) * v + u; u64 r= u64(u) - (q >> 64) * d - d; if (r > u64(q)) r+= d; if (r >= d) r-= d; return r; } }; template <class u_t, class MP> CE u_t pow(u_t x, u64 k, const MP &md) { for (u_t ret= md.set(1);; x= md.mul(x, x)) if (k & 1 ? ret= md.mul(ret, x) : 0; !(k>>= 1)) return ret; } #undef NORM #undef PLUS #undef DIFF #undef SGN #undef CE } namespace math_internal { struct m_b {}; struct s_b: m_b {}; } template <class mod_t> constexpr bool is_modint_v= std::is_base_of_v<math_internal::m_b, mod_t>; template <class mod_t> constexpr bool is_staticmodint_v= std::is_base_of_v<math_internal::s_b, mod_t>; namespace math_internal { #define CE constexpr template <class MP, u64 MOD> struct SB: s_b { protected: static CE MP md= MP(MOD); }; template <class Int, class U, class B> struct MInt: public B { using Uint= U; static CE inline auto mod() { return B::md.mod; } CE MInt(): x(0) {} template <class T, enable_if_t<is_modint_v<T> && !is_same_v<T, MInt>, nullptr_t> = nullptr> CE MInt(T v): x(B::md.set(v.val() % B::md.mod)) {} CE MInt(__int128_t n): x(B::md.set((n < 0 ? ((n= (-n) % B::md.mod) ? B::md.mod - n : n) : n % B::md.mod))) {} CE MInt operator-() const { return MInt() - *this; } #define FUNC(name, op) \ CE MInt name const { \ MInt ret; \ ret.x= op; \ return ret; \ } FUNC(operator+(const MInt& r), B::md.plus(x, r.x)) FUNC(operator-(const MInt& r), B::md.diff(x, r.x)) FUNC(operator*(const MInt& r), B::md.mul(x, r.x)) FUNC(pow(u64 k), math_internal::pow(x, k, B::md)) #undef FUNC CE MInt operator/(const MInt& r) const { return *this * r.inv(); } CE MInt& operator+=(const MInt& r) { return *this= *this + r; } CE MInt& operator-=(const MInt& r) { return *this= *this - r; } CE MInt& operator*=(const MInt& r) { return *this= *this * r; } CE MInt& operator/=(const MInt& r) { return *this= *this / r; } CE bool operator==(const MInt& r) const { return B::md.norm(x) == B::md.norm(r.x); } CE bool operator!=(const MInt& r) const { return !(*this == r); } CE bool operator<(const MInt& r) const { return B::md.norm(x) < B::md.norm(r.x); } CE inline MInt inv() const { return mod_inv<Int>(val(), B::md.mod); } CE inline Uint val() const { return B::md.get(x); } friend ostream& operator<<(ostream& os, const MInt& r) { return os << r.val(); } friend istream& operator>>(istream& is, MInt& r) { i64 v; return is >> v, r= MInt(v), is; } private: Uint x; }; template <u64 MOD> using ModInt= conditional_t < (MOD < (1 << 30)) & MOD, MInt<int, u32, SB<MP_Mo<u32, u64, 32, 31>, MOD>>, conditional_t < (MOD < (1ull << 62)) & MOD, MInt<i64, u64, SB<MP_Mo<u64, u128, 64, 63>, MOD>>, conditional_t<MOD<(1u << 31), MInt<int, u32, SB<MP_Na, MOD>>, conditional_t<MOD<(1ull << 32), MInt<i64, u32, SB<MP_Na, MOD>>, conditional_t<MOD <= (1ull << 41), MInt<i64, u64, SB<MP_Br2, MOD>>, MInt<i64, u64, SB<MP_D2B1, MOD>>>>>>>; #undef CE } using math_internal::ModInt; template <class mod_t, size_t LM> mod_t get_inv(int n) { static_assert(is_modint_v<mod_t>); static const auto m= mod_t::mod(); static mod_t dat[LM]; static int l= 1; if (l == 1) dat[l++]= 1; while (l <= n) dat[l++]= dat[m % l] * (m - m / l); return dat[n]; } template <class T> struct ListRange { using Iterator= typename std::vector<T>::const_iterator; Iterator bg, ed; Iterator begin() const { return bg; } Iterator end() const { return ed; } size_t size() const { return std::distance(bg, ed); } const T &operator[](int i) const { return bg[i]; } }; template <class T> class CsrArray { std::vector<T> csr; std::vector<int> pos; public: CsrArray()= default; CsrArray(const std::vector<T> &c, const std::vector<int> &p): csr(c), pos(p) {} size_t size() const { return pos.size() - 1; } const ListRange<T> operator[](int i) const { return {csr.cbegin() + pos[i], csr.cbegin() + pos[i + 1]}; } }; template <class Cost= void> class Tree { template <class D, class T> struct Edge_B { int to; T cost; operator int() const { return to; } }; template <class D> struct Edge_B<D, void> { int to; operator int() const { return to; } }; using Edge= Edge_B<void, Cost>; std::vector<std::conditional_t<std::is_same_v<Cost, void>, std::pair<int, int>, std::tuple<int, int, Cost>>> es; std::vector<Edge> g; std::vector<int> P, PP, D, I, L, R, pos; public: Tree(int n): P(n, -2) {} template <class T= Cost, std::enable_if_t<std::is_same_v<T, void>, std::nullptr_t> = nullptr> void add_edge(int u, int v) { es.emplace_back(u, v), es.emplace_back(v, u); } template <class T, std::enable_if_t<std::is_convertible_v<T, Cost>, std::nullptr_t> = nullptr> void add_edge(int u, int v, T c) { es.emplace_back(u, v, c), es.emplace_back(v, u, c); } template <class T, class U, std::enable_if_t<std::conjunction_v<std::is_convertible<T, Cost>, std::is_convertible<U, Cost>>, std::nullptr_t> = nullptr> void add_edge(int u, int v, T c, U d) /* c:u->v, d:v->u */ { es.emplace_back(u, v, c), es.emplace_back(v, u, d); } void build(int root= 0) { size_t n= P.size(); I.resize(n), PP.resize(n), std::iota(PP.begin(), PP.end(), 0), D.assign(n, 0), L.assign(n, 0), R.assign(n, 0), pos.resize(n + 1), g.resize(es.size()); for (const auto &e: es) ++pos[std::get<0>(e)]; std::partial_sum(pos.begin(), pos.end(), pos.begin()); if constexpr (std::is_same_v<Cost, void>) for (const auto &[f, t]: es) g[--pos[f]]= {t}; else for (const auto &[f, t, c]: es) g[--pos[f]]= {t, c}; auto f= [&, i= 0, v= 0, t= 0](int r) mutable { for (P[r]= -1, I[t++]= r; i < t; ++i) for (int u: operator[](v= I[i])) if (P[v] != u) P[I[t++]= u]= v; }; f(root); for (size_t r= 0; r < n; ++r) if (P[r] == -2) f(r); std::vector<int> Z(n, 1), nx(n, -1); for (int i= n, v; i--;) { if (P[v= I[i]] == -1) continue; if (Z[P[v]]+= Z[v]; nx[P[v]] == -1) nx[P[v]]= v; if (Z[nx[P[v]]] < Z[v]) nx[P[v]]= v; } for (int v: I) if (nx[v] != -1) PP[nx[v]]= v; for (int v: I) if (P[v] != -1) PP[v]= PP[PP[v]], D[v]= D[P[v]] + 1; for (int i= n; i--;) L[I[i]]= i; for (int v: I) { int ir= R[v]= L[v] + Z[v]; for (int u: operator[](v)) if (u != P[v] && u != nx[v]) L[u]= ir-= Z[u]; if (nx[v] != -1) L[nx[v]]= L[v] + 1; } for (int i= n; i--;) I[L[i]]= i; } size_t size() const { return P.size(); } const ListRange<Edge> operator[](int v) const { return {g.cbegin() + pos[v], g.cbegin() + pos[v + 1]}; } int depth(int v) const { return D[v]; } int to_seq(int v) const { return L[v]; } int to_node(int i) const { return I[i]; } int parent(int v) const { return P[v]; } int root(int v) const { for (v= PP[v];; v= PP[P[v]]) if (P[v] == -1) return v; } bool connected(int u, int v) const { return root(u) == root(v); } int lca(int u, int v) const { for (;; v= P[PP[v]]) { if (L[u] > L[v]) std::swap(u, v); if (PP[u] == PP[v]) return u; } } int la(int v, int k) const { assert(k <= D[v]); for (int u;; k-= L[v] - L[u] + 1, v= P[u]) if (L[v] - k >= L[u= PP[v]]) return I[L[v] - k]; } int jump(int u, int v, int k) const { if (!k) return u; if (u == v) return -1; if (k == 1) return in_subtree(v, u) ? la(v, D[v] - D[u] - 1) : P[u]; int w= lca(u, v), d_uw= D[u] - D[w], d_vw= D[v] - D[w]; return k > d_uw + d_vw ? -1 : k <= d_uw ? la(u, k) : la(v, d_uw + d_vw - k); } int dist(int u, int v) const { return depth(u) + depth(v) - depth(lca(u, v)) * 2; } // u is in v bool in_subtree(int u, int v) const { return L[v] <= L[u] && L[u] < R[v]; } int subtree_size(int v) const { return R[v] - L[v]; } // half-open interval std::array<int, 2> subtree(int v) const { return std::array{L[v], R[v]}; } // sequence of closed intervals template <bool edge= 0> std::vector<std::array<int, 2>> path(int u, int v) const { std::vector<std::array<int, 2>> up, down; while (PP[u] != PP[v]) { if (L[u] < L[v]) down.emplace_back(std::array{L[PP[v]], L[v]}), v= P[PP[v]]; else up.emplace_back(std::array{L[u], L[PP[u]]}), u= P[PP[u]]; } if (L[u] < L[v]) down.emplace_back(std::array{L[u] + edge, L[v]}); else if (L[v] + edge <= L[u]) up.emplace_back(std::array{L[u], L[v] + edge}); return up.insert(up.end(), down.rbegin(), down.rend()), up; } }; #define MEMBER_MACRO(member, Dummy, name, type1, type2, last) \ template <class tClass> struct name##member { \ template <class U, Dummy> static type1 check(U *); \ static type2 check(...); \ static tClass *mClass; \ last; \ }; #define HAS_CHECK(member, Dummy) MEMBER_MACRO(member, Dummy, has_, std::true_type, std::false_type, static const bool value= decltype(check(mClass))::value) #define HAS_MEMBER(member) HAS_CHECK(member, int dummy= (&U::member, 0)) #define HAS_TYPE(member) HAS_CHECK(member, class dummy= typename U::member) #define HOGE_OR(member, name, type2) \ MEMBER_MACRO(member, class dummy= typename U::member, name, typename U::member, type2, using type= decltype(check(mClass))) \ template <class tClass> using name##member##_t= typename name##member<tClass>::type; #define NULLPTR_OR(member) HOGE_OR(member, nullptr_or_, std::nullptr_t); #define MYSELF_OR(member) HOGE_OR(member, myself_or_, tClass); template <class T> static constexpr bool tuple_like_v= false; template <class... Args> static constexpr bool tuple_like_v<std::tuple<Args...>> = true; template <class T, class U> static constexpr bool tuple_like_v<std::pair<T, U>> = true; template <class T, size_t K> static constexpr bool tuple_like_v<std::array<T, K>> = true; template <class T> auto to_tuple(const T &t) { if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::make_tuple(x...); }, t); } template <class T> auto forward_tuple(const T &t) { if constexpr (tuple_like_v<T>) return std::apply([](auto &&...x) { return std::forward_as_tuple(x...); }, t); } template <class T> static constexpr bool array_like_v= false; template <class T, size_t K> static constexpr bool array_like_v<std::array<T, K>> = true; template <class T, class U> static constexpr bool array_like_v<std::pair<T, U>> = std::is_convertible_v<T, U>; template <class T> static constexpr bool array_like_v<std::tuple<T>> = true; template <class T, class U, class... Args> static constexpr bool array_like_v<std::tuple<T, U, Args...>> = array_like_v<std::tuple<T, Args...>> && std::is_convertible_v<U, T>; template <class T> auto to_array(const T &t) { if constexpr (array_like_v<T>) return std::apply([](auto &&...x) { return std::array{x...}; }, t); } template <class T> using to_tuple_t= decltype(to_tuple(T())); template <class T> using to_array_t= decltype(to_array(T())); template <class T> struct other_than_first_argument_type_impl { using type= void; }; template <class T, class... Args> struct other_than_first_argument_type_impl<std::tuple<T, Args...>> { using type= std::tuple<Args...>; }; template <class T> using other_than_first_argument_type_t= typename other_than_first_argument_type_impl<T>::type; // clang-format off template<class T>struct make_long{using type= T;}; template<>struct make_long<int8_t>{using type= int16_t;}; template<>struct make_long<uint8_t>{using type= uint16_t;}; template<>struct make_long<int16_t>{using type= int32_t;}; template<>struct make_long<uint16_t>{using type= uint32_t;}; template<>struct make_long<int32_t>{using type= int64_t;}; template<>struct make_long<uint32_t>{using type= uint64_t;}; template<>struct make_long<int64_t>{using type= __int128_t;}; template<>struct make_long<uint64_t>{using type= __uint128_t;}; template<>struct make_long<float>{using type= double;}; template<>struct make_long<double>{using type= long double;}; template<class T> using make_long_t= typename make_long<T>::type; // clang-format on namespace kdtree_internal { template <class pos_t, size_t K, class M, class A, class B> class KDTreeImpl {}; template <class pos_t, size_t K, class M, class... PK, class... PK2> class KDTreeImpl<pos_t, K, M, std::tuple<PK...>, std::tuple<PK2...>> { HAS_MEMBER(op); HAS_MEMBER(ti); HAS_MEMBER(mp); HAS_MEMBER(cp); HAS_TYPE(T); HAS_TYPE(E); MYSELF_OR(T); NULLPTR_OR(E); using Sec= std::array<pos_t, 2>; using Pos= std::array<pos_t, K>; using Range= std::array<Sec, K>; using long_pos_t= make_long_t<pos_t>; template <class L> static constexpr bool monoid_v= std::conjunction_v<has_T<L>, has_op<L>, has_ti<L>>; template <class L> static constexpr bool dual_v= std::conjunction_v<has_T<L>, has_E<L>, has_mp<L>, has_cp<L>>; struct Node_BB { int ch[2]= {-1, -1}; Pos pos; pos_t range[K][2]; }; template <class U> struct Node_B: Node_BB { U val; }; template <class D, bool sg, bool du> struct Node_D: Node_B<M> {}; template <bool sg, bool du> struct Node_D<void, sg, du>: Node_BB {}; template <class D> struct Node_D<D, 1, 0>: Node_B<typename M::T> { typename M::T sum; }; template <class D> struct Node_D<D, 0, 1>: Node_B<typename M::T> { typename M::E laz; bool laz_flg= false; }; template <class D> struct Node_D<D, 1, 1>: Node_B<typename M::T> { typename M::T sum; typename M::E laz; bool laz_flg= false; }; using Node= Node_D<M, monoid_v<M>, dual_v<M>>; using Iter= typename std::vector<int>::iterator; using T= std::conditional_t<std::is_void_v<M>, std::nullptr_t, myself_or_T_t<M>>; using E= nullptr_or_E_t<M>; template <class P> using canbe_Pos= std::is_convertible<to_tuple_t<P>, std::tuple<PK...>>; template <class P> using canbe_PosV= std::is_convertible<to_tuple_t<P>, std::tuple<PK..., T>>; template <class P, class U> static constexpr bool canbe_Pos_and_T_v= std::conjunction_v<canbe_Pos<P>, std::is_convertible<U, T>>; std::vector<Node> ns; static inline T def_val() { if constexpr (monoid_v<M>) return M::ti(); else return T(); } template <bool z, size_t k, class P> static inline auto get_(const P &p) { if constexpr (z == 0) return std::get<k>(p); else return std::get<k>(p.first); } template <class P, size_t... I> Range to_range(const P &p, std::index_sequence<I...>) { return {(assert(std::get<I + I>(p) <= std::get<I + I + 1>(p)), Sec{std::get<I + I>(p), std::get<I + I + 1>(p)})...}; } inline void update(int t) { ns[t].sum= ns[t].val; if (ns[t].ch[0] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[0]].sum); if (ns[t].ch[1] != -1) ns[t].sum= M::op(ns[t].sum, ns[ns[t].ch[1]].sum); } inline void propagate(int t, const E &x) { if (t == -1) return; if (ns[t].laz_flg) M::cp(ns[t].laz, x); else ns[t].laz= x, ns[t].laz_flg= true; M::mp(ns[t].val, x); if constexpr (monoid_v<M>) M::mp(ns[t].sum, x); } inline void push(int t) { if (ns[t].laz_flg) ns[t].laz_flg= false, propagate(ns[t].ch[0], ns[t].laz), propagate(ns[t].ch[1], ns[t].laz); } template <bool z, class P, size_t k> inline void set_range(int t, int m, Iter bg, Iter ed, const P *p) { auto [mn, mx]= std::minmax_element(bg, ed, [&](int a, int b) { return get_<z, k>(p[a]) < get_<z, k>(p[b]); }); ns[t].range[k][0]= get_<z, k>(p[*mn]), ns[t].range[k][1]= get_<z, k>(p[*mx]), ns[t].pos[k]= get_<z, k>(p[m]); } template <bool z, class P, size_t... I> inline void set_range_lp(int t, int m, Iter bg, Iter ed, const P *p, std::index_sequence<I...>) { (void)(int[]){(set_range<z, P, I>(t, m, bg, ed, p), 0)...}; } template <bool z, uint8_t div, class P> inline int build(int &ts, Iter bg, Iter ed, const P *p, const T &v= def_val()) { if (bg == ed) return -1; auto md= bg + (ed - bg) / 2; int t= ts++; std::nth_element(bg, md, ed, [&](int a, int b) { return get_<z, div>(p[a]) < get_<z, div>(p[b]); }), set_range_lp<z>(t, *md, bg, ed, p, std::make_index_sequence<K>()); if constexpr (z == 0) { if constexpr (!std::is_void_v<M>) { if constexpr (std::tuple_size_v<P> == K + 1) ns[t].val= std::get<K>(p[*md]); else ns[t].val= v; } } else ns[t].val= p[*md].second; static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1; ns[t].ch[0]= build<z, nx>(ts, bg, md, p, v), ns[t].ch[1]= build<z, nx>(ts, md + 1, ed, p, v); if constexpr (monoid_v<M>) update(t); return t; } template <bool z, uint8_t div, class P> inline int build(Iter bg, Iter ed, const P *p, int &ts) { if (bg == ed) return -1; auto md= bg + (ed - bg) / 2; int t= ts++; std::nth_element(bg, md, ed, [&](int a, int b) { return get_<z, div>(p[a]) < get_<z, div>(p[b]); }), set_range_lp<z>(t, bg, ed, p, std::make_index_sequence<K>()); if constexpr (z == 0) { if constexpr (!std::is_void_v<M>) { if constexpr (std::tuple_size_v<P> == K + 1) ns[t].val= std::get<K>(p[t]); else ns[t].val= def_val(); } } else ns[t].val= p[t].second; static constexpr uint8_t nx= div + 1 == K ? 0 : div + 1; ns[t].ch[0]= build<z, nx>(bg, md, p, ts), ns[t].ch[1]= build<z, nx>(md + 1, ed, p, ts); if constexpr (monoid_v<M>) update(t); return t; } static inline auto in_cuboid(const Range &r) { return [r](const Pos &pos) { for (uint8_t k= K; k--;) if (r[k][1] < pos[k] || pos[k] < r[k][0]) return false; return true; }; } static inline auto out_cuboid(const Range &r) { return [r](const pos_t rr[K][2]) { for (uint8_t k= K; k--;) if (rr[k][1] < r[k][0] || r[k][1] < rr[k][0]) return true; return false; }; } static inline auto inall_cuboid(const Range &r) { return [r](const pos_t rr[K][2]) { for (uint8_t k= K; k--;) if (rr[k][0] < r[k][0] || r[k][1] < rr[k][1]) return false; return true; }; } static inline long_pos_t min_dist2(const pos_t r[K][2], const Pos &pos) { long_pos_t d2= 0, dx; for (uint8_t k= K; k--;) dx= std::clamp(pos[k], r[k][0], r[k][1]) - pos[k], d2+= dx * dx; return d2; } static inline auto in_ball(const Pos &c, long_pos_t r2) { return [c, r2](const Pos &pos) { long_pos_t d2= 0, dx; for (uint8_t k= K; k--;) dx= pos[k] - c[k], d2+= dx * dx; return d2 <= r2; }; } static inline auto inall_ball(const Pos &c, long_pos_t r2) { return [c, r2](const pos_t rr[K][2]) { long_pos_t d2= 0, dx0, dx1; for (uint8_t k= K; k--;) dx0= rr[k][0] - c[k], dx1= rr[k][1] - c[k], d2+= std::max(dx0 * dx0, dx1 * dx1); return d2 <= r2; }; } static inline auto out_ball(const Pos &c, long_pos_t r2) { return [c, r2](const pos_t r[K][2]) { return min_dist2(r, c) > r2; }; } inline void nns(int t, const Pos &pos, std::pair<int, long_pos_t> &ret) const { if (t == -1) return; long_pos_t d2= min_dist2(ns[t].range, pos); if (ret.first != -1 && d2 >= ret.second) return; long_pos_t dx= d2= 0; for (uint8_t k= K; k--;) dx= pos[k] - ns[t].pos[k], d2+= dx * dx; if (ret.first == -1 || d2 < ret.second) ret= {t, d2}; bool f= 0; if (auto [l, r]= ns[t].ch; l != -1 && r != -1) f= min_dist2(ns[l].range, pos) > min_dist2(ns[r].range, pos); nns(ns[t].ch[f], pos, ret), nns(ns[t].ch[!f], pos, ret); } template <class In, class Out> inline void col(int t, const In &in, const Out &out, std::vector<T> &ret) const { if (t == -1 || out(ns[t].range)) return; if (in(ns[t].pos)) ret.push_back(ns[t].val); col(ns[t].ch[0], in, out, ret), col(ns[t].ch[1], in, out, ret); } template <class In, class InAll, class Out> inline T fld(int t, const In &in, const InAll &inall, const Out &out) { if (t == -1 || out(ns[t].range)) return def_val(); if (inall(ns[t].range)) return ns[t].sum; if constexpr (dual_v<M>) push(t); T ret= M::op(fld(ns[t].ch[0], in, inall, out), fld(ns[t].ch[1], in, inall, out)); return in(ns[t].pos) ? M::op(ret, ns[t].val) : ret; } template <class In, class InAll, class Out> inline void app(int t, const In &in, const InAll &inall, const Out &out, const E &x) { if (t == -1 || out(ns[t].range)) return; if (inall(ns[t].range)) return propagate(t, x); if (push(t); in(ns[t].pos)) M::mp(ns[t].val, x); app(ns[t].ch[0], in, inall, out, x), app(ns[t].ch[1], in, inall, out, x); if constexpr (monoid_v<M>) update(t); } inline bool set(int t, const Pos &pos, const T &x) { if (t == -1) return false; bool isok= true; for (uint8_t k= K; k--; isok&= pos[k] == ns[t].pos[k]) if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return false; if constexpr (dual_v<M>) push(t); if (isok) ns[t].val= x; else if (!(isok= set(ns[t].ch[0], pos, x))) isok= set(ns[t].ch[1], pos, x); if constexpr (monoid_v<M>) if (isok) update(t); return isok; } inline std::pair<T, bool> get(int t, const Pos &pos) { if (t == -1) return {T(), false}; bool myself= true; for (uint8_t k= K; k--; myself&= pos[k] == ns[t].pos[k]) if (ns[t].range[k][1] < pos[k] || pos[k] < ns[t].range[k][0]) return {T(), false}; if (myself) return {ns[t].val, true}; if constexpr (dual_v<M>) push(t); auto ret= get(ns[t].ch[0], pos); return !ret.second ? get(ns[t].ch[1], pos) : ret; } public: template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> KDTreeImpl(const P *p, size_t n): ns(n) { std::vector<int> ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<0, 0>(ts, ids.begin(), ids.end(), p); } template <class P, typename= std::enable_if_t<std::disjunction_v<canbe_Pos<P>, canbe_PosV<P>>>> KDTreeImpl(const std::vector<P> &p): KDTreeImpl(p.data(), p.size()) {} template <class P, typename= std::enable_if_t<canbe_Pos<P>::value>> KDTreeImpl(const std::set<P> &p): KDTreeImpl(std::vector(p.begin(), p.end())) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const P *p, size_t n, U v): ns(n) { std::vector<int> ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<0, 0>(ts, ids.begin(), ids.end(), p, v); } template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::vector<P> &p, U v): KDTreeImpl(p.data(), p.size(), v) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::set<P> &p, U v): KDTreeImpl(std::vector(p.begin(), p.end()), v) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::pair<P, U> *p, size_t n): ns(n) { std::vector<int> ids(n); int ts= 0; std::iota(ids.begin(), ids.end(), 0), build<1, 0>(ts, ids.begin(), ids.end(), p); } template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::vector<std::pair<P, U>> &p): KDTreeImpl(p.data(), p.size()) {} template <class P, class U, typename= std::enable_if_t<canbe_Pos_and_T_v<P, U>>> KDTreeImpl(const std::map<P, U> &p): KDTreeImpl(std::vector(p.begin(), p.end())) {} std::vector<T> enum_cuboid(PK2... xs) { static_assert(!std::is_void_v<M>, "\"enum_cuboid\" is not available"); std::vector<T> ret; auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>()); return col(-ns.empty(), in_cuboid(r), out_cuboid(r), ret), ret; } std::vector<T> enum_ball(PK... xs, pos_t r) const { static_assert(!std::is_void_v<M>, "\"enum_ball\" is not available"); std::vector<T> ret; long_pos_t r2= long_pos_t(r) * r; return col(-ns.empty(), in_ball({xs...}, r2), out_ball({xs...}, r2), ret), ret; } T fold_cuboid(PK2... xs) { static_assert(monoid_v<M>, "\"fold_cuboid\" is not available"); auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>()); return fld(-ns.empty(), in_cuboid(r), inall_cuboid(r), out_cuboid(r)); } T fold_ball(PK... xs, pos_t r) { static_assert(monoid_v<M>, "\"fold_ball\" is not available"); long_pos_t r2= long_pos_t(r) * r; return fld(-ns.empty(), in_ball({xs...}, r2), inall_ball({xs...}, r2), out_ball({xs...}, r2)); } void apply_cuboid(PK2... xs, E a) { static_assert(dual_v<M>, "\"apply_cuboid\" is not available"); auto r= to_range(std::forward_as_tuple(xs...), std::make_index_sequence<K>()); app(-ns.empty(), in_cuboid(r), inall_cuboid(r), out_cuboid(r), a); } void apply_ball(PK... xs, pos_t r, E a) { static_assert(dual_v<M>, "\"apply_ball\" is not available"); long_pos_t r2= long_pos_t(r) * r; app(-ns.empty(), in_ball({xs...}, r2), inall_ball({xs...}, r2), out({xs...}, r2), a); } void set(PK... p, T v) { assert(ns.size()), assert(set(0, {p...}, v)); } T get(PK... p) { assert(ns.size()); auto [ret, flg]= get(0, {p...}); return assert(flg), ret; } Pos nearest_neighbor(PK... p) const { assert(ns.size()); std::pair<int, long_pos_t> ret= {-1, -1}; return nns(0, {p...}, ret), ns[ret.first].pos; } }; template <class pos_t, size_t K, class M= void> using KDTree= KDTreeImpl<pos_t, K, M, to_tuple_t<std::array<pos_t, K>>, to_tuple_t<std::array<pos_t, K + K>>>; } using kdtree_internal::KDTree; using namespace std; using Mint= ModInt<998244353>; struct RaffineQ { using T= Mint; using E= array<Mint, 2>; static void mp(T &v, const E &x) { v= x[0] * v + x[1]; } static void cp(E &p, const E &n) { p[0]*= n[0], p[1]*= n[0], p[1]+= n[1]; } }; signed main() { cin.tie(0); ios::sync_with_stdio(0); int N, Q; cin >> N >> Q; Tree tree(N); for (int i= N - 1; i--;) { int A, B; cin >> A >> B; tree.add_edge(A - 1, B - 1); } tree.build(0); vector<tuple<int, int, Mint>> xy; for (int v= 0; v < N; ++v) { Mint X; cin >> X; xy.emplace_back(tree.to_seq(v), tree.depth(v), X); } KDTree<int, 2, RaffineQ> kdt(xy); while (Q--) { int t; cin >> t; if (t == 1) { int V; cin >> V, --V; cout << kdt.get(tree.to_seq(V), tree.depth(V)) << "\n"; } else if (t == 2) { int V, K, C, D; cin >> V >> K >> C >> D, --V; for (int i= 0; i <= K; ++i) { int p= tree.parent(V); auto [l, r]= tree.subtree(V); int d= tree.depth(V); if (p == -1) { kdt.apply_cuboid(l, r - 1, d, d + K - i, {C, D}); break; } kdt.apply_cuboid(l, r - 1, d + K - i - 1, d + K - i, {C, D}); V= p; } } else if (t == 3) { int V, C, D; cin >> V >> C >> D, --V; auto [l, r]= tree.subtree(V); kdt.apply_cuboid(l, r - 1, 0, N, {C, D}); } else { int U, V, C, D; cin >> U >> V >> C >> D, --U, --V; for (auto [a, b]: tree.path(U, V)) a < b ? kdt.apply_cuboid(a, b, 0, N, {C, D}) : kdt.apply_cuboid(b, a, 0, N, {C, D}); } } return 0; }